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Multi-label Classification

Binary classification: Is this a picture of the sea?

∈ {yes, no}



Multi-label Classification

Multi-class classification: What is this a picture of?

∈ {sea, sunset, trees, people, mountain, urban}



Multi-label Classification

Multi-label classification: Which labels are relevant to this
picture?

⊆ {sea, sunset, trees, people, mountain, urban}

i.e., multiple labels per instance instead of a single label!



Multi-label Classification

K = 2 K > 2
L = 1 binary multi-class
L > 1 multi-label multi-output†

† also known as multi-target, multi-dimensional.

Figure: For L target variables (labels), each of K values.

multi-output can be cast to multi-label, just as multi-class
can be cast to binary.

tagging / keyword assignment: set of labels (L) is not
predefined



Increasing Interest

year in text in title
1996-2000 23 1
2001-2005 188 18
2006-2010 1470 164
2011-2015 4550 485

Table: Academic articles containing the phrase ‘multi-label
classification’ (Google Scholar)



Single-label vs. Multi-label

Table: Single-label Y ∈ {0, 1}
X1 X2 X3 X4 X5 Y
1 0.1 3 1 0 0
0 0.9 1 0 1 1
0 0.0 1 1 0 0
1 0.8 2 0 1 1
1 0.0 2 0 1 0

0 0.0 3 1 1 ?

Table: Multi-label Y ⊆ {λ1, . . . , λL}
X1 X2 X3 X4 X5 Y
1 0.1 3 1 0 {λ2, λ3}
0 0.9 1 0 1 {λ1}
0 0.0 1 1 0 {λ2}
1 0.8 2 0 1 {λ1, λ4}
1 0.0 2 0 1 {λ4}
0 0.0 3 1 1 ?



Single-label vs. Multi-label

Table: Single-label Y ∈ {0, 1}
X1 X2 X3 X4 X5 Y
1 0.1 3 1 0 0
0 0.9 1 0 1 1
0 0.0 1 1 0 0
1 0.8 2 0 1 1
1 0.0 2 0 1 0

0 0.0 3 1 1 ?

Table: Multi-label [Y1, . . . ,YL] ∈ 2L

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4

1 0.1 3 1 0 0 1 1 0
0 0.9 1 0 1 1 0 0 0
0 0.0 1 1 0 0 1 0 0
1 0.8 2 0 1 1 0 0 1
1 0.0 2 0 1 0 0 0 1

0 0.0 3 1 1 ? ? ? ?
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Text Categorization

For example, the news . . .

Novo Banco: Portugal bank sell-off hits snag

Portugal’s central bank has missed its deadline to sell
Novo Banco, a bank created after the collapse of the
country’s second-biggest lender.

Reuters collection, newswire stories into 103 topic codes



Text Categorization

For example, the IMDb dataset: Textual movie plot summaries
associated with genres (labels).



Text Categorization

For example, the IMDb dataset: Textual movie plot summaries
associated with genres (labels).
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i X1 X2 . . . X1000 X1001 Y1 Y2 . . . Y27 Y28

1 1 0 . . . 0 1 0 1 . . . 0 0
2 0 1 . . . 1 0 1 0 . . . 0 0
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120919 1 1 . . . 0 0 0 0 . . . 0 1



Labelling E-mails

For example, the Enron e-mails multi-labelled to 53
categories by the UC Berkeley Enron Email Analysis
Project

Company Business, Strategy, etc.
Purely Personal
Empty Message
Forwarded email(s)
. . .
company image – current
. . .
Jokes, humor (related to business)
. . .
Emotional tone: worry / anxiety
Emotional tone: sarcasm
. . .
Emotional tone: shame
Company Business, Strategy, etc.



Labelling Images

Images are labelled to indicate

multiple concepts

multiple objects

multiple people

e.g., Scene data with concept labels
⊆ {beach, sunset, foliage, field, mountain, urban}



Applications: Audio
Labelling music/tracks with genres / voices, concepts, etc.

e.g., Music dataset, audio tracks labelled with different moods,
among: {

amazed-surprised,

happy-pleased,

relaxing-calm,

quiet-still,

sad-lonely,

angry-aggressive

}



Medical

Medical Diagnosis

medical history, symptoms→ diseases / ailments

e.g., Medical dataset,

clinical free text reports by radiologists

label assignment out of 45 ICD-9-CM codes



Bioinformatics

Genes are associated with biological functions.

E.g. the Yeast dataset: 2, 417 genes, described by 103
attributes, labeled into 14 groups of the FunCAt
functional catalogue.



Related Tasks
multi-output1 classification: outputs are nominal

yj ∈ {1, . . . ,K }, y ∈ NL

multi-output regression: outputs are real-valued

yj ∈ R, y ∈ RL

X1 X2 X3 X4 X5 p
ri

ce

ag
e

p
er

ce
n

t

x1 x2 x3 x4 x5 37.00 25 0.88
x1 x2 x3 x4 x5 22.88 22 0.22
x1 x2 x3 x4 x5 88.23 11 0.77

label ranking, i.e., preference learning

λ3 � λ1 � λ4 � . . . � λ2

1aka multi-target, multi-dimensional



Related Areas

multi-task learning: multiple tasks, shared
representation, data may come from different sources
e.g., learn to recognise speech for different speakers,
classify text from different corpora

sequential learning: predict across time indices instead of
across label indices

structured output prediction: assume particular structure
amoung outputs, e.g., pixels



Advanced Applications

Figure: Image Segmentation: Foreground yj = 1



Advanced Applications

Figure: Localization: yj = 1 if j-th tile occupied.



Advanced Applications

Figure: Demand prediction: yj = 1 if high demand at j-th node.



Outline

1 Introduction

2 Applications

3 Background

4 Problem Transformation

5 Algorithm Adaptation

6 Label Dependence

7 Multi-label Evaluation

8 Summary & Resources



Single-label Classification

y

x5x4x3x2x1

ŷ = h(x) • classifier h

= argmax
y∈{0,1}

p(y|x) •MAP Estimate



Example: Naive Bayes

y

x5x4x3x2x1

ŷ = argmax
y∈{0,1}

p(y)p(x|y) • Generative, p(y|x) ∝ p(x|y)p(y)

= argmax
y∈{0,1}

p(y)
D∏

d=1

p(xd |y) •Naive Bayes



Example: Logistic Regression

y

x5x4x3x2x1

ŷ = argmax
y∈{0,1}

p(y|x) •MAP Estimate

p(y = 1|x) = fw(x) =
1

1 + exp(−w>x)
• Logistic Regression

and find w to minimize E(w)



Focus on the Labels

y

x5x4x3x2x1

y1 y2 y3 y4

x5x4x3x2x1

y4y3y2y1

xd

D

y4y3y2y1

x



Multi-label Classification

y4y3y2y1

x

ŷj = hj(x) = argmax
yj∈{0,1}

p(yj |x) • for index, j = 1, . . . ,L

and then,

ŷ = h(x) = [ŷ1, . . . , ŷ4]

=
[

argmax
y1∈{0,1}

p(y1|x), · · · , argmax
y4∈{0,1}

p(y4|x)
]

=
[

f1(x), · · · , f4(x)
]
= f (W>x)

This is the Binary Relevance method (BR).
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BR Transformation
1 Transform dataset . . .

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1
. . . into L separate binary problems (one for each label)

X Y1

x(1) 0
x(2) 1
x(3) 0
x(4) 1
x(5) 0

X Y2

x(1) 1
x(2) 0
x(3) 1
x(4) 0
x(5) 0

X Y3

x(1) 1
x(2) 0
x(3) 0
x(4) 0
x(5) 0

X Y4

x(1) 0
x(2) 0
x(3) 0
x(4) 1
x(5) 1

2 and train with any off-the-shelf binary base classifier.



Why Not Binary Relevance?

BR ignores label dependence, i.e.,

p(y|x) ∝ p(x)
L∏

j=1

p(yj |x)

which may not always hold!

Example (Film Genre Classification)

p(yromance|x) 6= p(yromance|x, yhorror)



Why Not Binary Relevance?
BR ignores label dependence, i.e.,

p(y|x) ∝ p(x)
L∏

j=1

p(yj |x)

which may not always hold!

Table: Average predictive performance (5 fold CV, EXACT MATCH)

L BR MCC

Music 6 0.30 0.37
Scene 6 0.54 0.68
Yeast 14 0.14 0.23
Genbase 27 0.94 0.96
Medical 45 0.58 0.62
Enron 53 0.07 0.09
Reuters 101 0.29 0.37



Classifier Chains

Modelling label dependence,

y4y3y2y1

x

p(y|x) ∝ p(x)
L∏

j=1

p(yj |x, y1, . . . , yj−1)

and,
ŷ = argmax

y∈{0,1}L

p(y|x)



CC Transformation

Similar to BR: make L binary problems, but include previous
predictions as feature attributes,

X Y1

x(1) 0
x(2) 1
x(3) 0
x(4) 1
x(5) 0

X Y1 Y2

x(1) 0 1
x(2) 1 0
x(3) 0 1
x(4) 1 0
x(5) 0 0

X Y1 Y2 Y3

x(1) 0 1 1
x(2) 1 0 0
x(3) 0 1 0
x(4) 1 0 0
x(5) 0 0 0

X Y1 Y3 Y3 Y4

x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1

and, again, apply any classifier (not necessarily a probabilistic
one)!



Greedy CC

y4y3y2y1

x

L classifiers for L labels. For test instance x̃, classify [22],
1 ŷ1 = h1(x̃)
2 ŷ2 = h2(x̃, ŷ1)

3 ŷ3 = h3(x̃, ŷ1, ŷ2)

4 ŷ4 = h4(x̃, ŷ1, ŷ2, ŷ3)

and return
ŷ = [ŷ1, . . . , ŷL]



Example
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ŷ = h(x̃) = [?, ?, ?]

y3y2y1

x

1 ŷ1 = h1(x̃) =
argmaxy1

p(y1|x̃) = 1

2 ŷ2 = h2(x̃, ŷ1) = . . . = 0
3 ŷ3 = h3(x̃, ŷ1, ŷ2) = . . . = 1

Improves over BR; similar build time (if L < D);

able to use any off-the-shelf classifier for hj ; parralelizable

But, errors may be propagated down the chain
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ŷ = h(x̃) = [1, ?, ?]

y3y2y1

x

1 ŷ1 = h1(x̃) =
argmaxy1

p(y1|x̃) = 1

2 ŷ2 = h2(x̃, ŷ1) = . . . = 0
3 ŷ3 = h3(x̃, ŷ1, ŷ2) = . . . = 1

Improves over BR; similar build time (if L < D);

able to use any off-the-shelf classifier for hj ; parralelizable

But, errors may be propagated down the chain
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But, errors may be propagated down the chain
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Improves over BR; similar build time (if L < D);
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But, errors may be propagated down the chain



Bayes Optimal CC

Bayes-optimal Probabilistic CC [4] (PCC)

ŷ = argmax
y∈{0,1}L

p(y|x)

= argmax
y∈{0,1}L

{
p(y1|x)

L∏
j=2

p(yj |x, y1, . . . , yj−1)
}
• chain rule

y4y3y2y1

x

Test all possible paths (y = [y1, . . . , yL] ∈ 2L in total)



Bayes Optimal CC
Example
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1 p(y = [0, 0, 0]) = 0.040
2 p(y = [0, 0, 1]) = 0.040
3 p(y = [0, 1, 0]) = 0.288
4 . . .
6 p(y = [1, 0, 1]) = 0.252
7 . . .
8 p(y = [1, 1, 1]) = 0.090

return argmaxy p(y|x̃)

Better accuracy than greedy CC but computationally
limited to L . 15



Monte-Carlo search for CC
1 For t = 1, . . . ,T iterations:

Sample yt ∼ p(y|x) the chain [20]

1 y1 ∼ p(y1|x) //y1 = 1 with probability p(y1|x)
2 y2 ∼ p(y2|x, y1, y2)

3 . . .
4 yL ∼ p(yL|x, y1, . . . , yL−1)

2 Predict
ŷ = argmax

yt∈{y1,...,yT }
p(yt |x)

y4y3y2y1

x



Monte-Carlo search for CC

Example
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Sample T times . . .

p([1, 0, 1]) = 0.6 · 0.7 · 0.6 =
0.252

p([0, 1, 0]) = 0.4 · 0.8 · 0.9 =
0.288

return argmaxyt
p(yt |x)



Monte-Carlo search for CC
Example
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Sample T times . . .

p([1, 0, 1]) = 0.6 · 0.7 · 0.6 =
0.252

p([0, 1, 0]) = 0.4 · 0.8 · 0.9 =
0.288

return argmaxyt
p(yt |x)

Tractable, with similar accuracy to (Bayes Optimal) PCC

Can use other search algorithms, e.g., beam search [13]



Does Label-order Matter?
Are these models equivalent?

y4y3y2y1

x

vs

y1y3y2y4

x

p(x, y) = p(y1|x)p(y2|y1, x) = p(y2|x)p(y1|y2, x)

but we are estimating p from finite and noisy data (and
possibly doing a greedy search); thus

p̂(y1|x)p̂(y2|ŷ1, x) 6= p̂(y2|x)p̂(y1|ŷ2, x)



Does Label-order Matter?
Are these models equivalent?

y4y3y2y1

x

vs

y1y3y2y4

x

p(x, y) = p(y1|x)p(y2|y1, x) = p(y2|x)p(y1|y2, x)

but we are estimating p from finite and noisy data (and
possibly doing a greedy search); thus

p̂(y1|x)p̂(y2|ŷ1, x) 6= p̂(y2|x)p̂(y1|ŷ2, x)



Searching the Chain Space
Can search the space of possible chain orderings [20] with, e.g.,
Monte Carlo walk

ys4ys3ys2ys1

x

For u = 1, . . . ,U :

1 propose su = [s1, . . . , sL] =
permute([1, . . . ,L])

2 build model on sequence su

3 evaluate; accept if better
(if J (su) > J (su−1))

Use hsU as the final model.

Example
Scene data

u su = [s1, . . . , sL] J (su)
0 [4, 2, 0, 1, 3, 5] 0.623
1 [4, 2, 0, 3, 1, 5] 0.628
2 [4, 2, 0, 3, 5, 1] 0.638
3 [4, 0, 2, 3, 5, 1] 0.647
5 [4, 0, 5, 2, 3, 1] 0.653
18 [5, 1, 4, 3, 2, 0] 0.654
23 [5, 4, 0, 1, 2, 3] 0.664
128 [3, 5, 1, 0, 2, 4] 0.668
176 [5, 3, 1, 0, 4, 2] 0.669
225 [5, 3, 1, 4, 0, 2] 0.670
J (s) := EXACTMATCH(Y, hs(X)) (higher is better)



Searching the Chain Space

ys4ys3ys2ys1

x

The space is of combinational proportions, . . . but a little
search can go a long way.
Many other options:

add temperature to freeze su from left to right over time
use a population of chain sequences: s(1)

u , . . . , s(M)
u

use beam search



Chain Structure

We can formulate any structure,

yj = hj(x, pa(yj))

where pa(yj) = parents of node j.

y4y3y2y1

x

If pa(yj) := {y1, . . . , yj−1}we recover CC

‘partial’ models are more efficient and interpretable



Structured Classifiers Chains
1 Measure some heuristic

marginal dependence [30]
conditional dependence [31]

2 Find a structure
3 Plug in base classifiers and run some CC inference

y4y3y2y1

xx

Related to Bayesian networks, [1, 2]:

p(y, x̃) =
L∏

j=1

p(yj |pa(yj), x̃)



Structured Classifiers Chains
1 Measure some heuristic

marginal dependence [30]
conditional dependence [31]

2 Find a structure
3 Plug in base classifiers and run some CC inference

y4y3y2y1

xx

Related to Bayesian networks, [1, 2]:

p(y, x̃) =
L∏

j=1

p(yj |pa(yj), x̃)



Label Powerset (LP)
One multi-class problem (taking many values),

ŷ = argmax
y∈{0,1}L

p(x)
L∏

j=1

p(yj |x, y1, . . . , yj−1) • PCC

= argmax
y∈Y

p(y|x) • LP, where Y ⊂ {0, 1}L

≡ argmax
y∈{0,...,2L−1}

p(y|x) • a multi-class problem!

y1, y2, y3, y4

x



Label Powerset (LP)

One multi-class problem (taking many values),

ŷ = argmax
y∈{0,1}L

p(x)
L∏

j=1

p(yj |x, y1, . . . , yj−1) • PCC

= argmax
y∈Y

p(y|x) • LP, where Y ⊂ {0, 1}L

≡ argmax
y∈{0,...,2L−1}

p(y|x) • a multi-class problem!

Each value is a label vector,

typically, the occurrences of the training set.

In practice, |Y| ≤ N , and |Y| � 2L



Label Powerset Method (LP)
1 Transform dataset . . .

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 1 0
x(4) 1 0 0 1
x(5) 0 0 0 1
. . . into a multi-class problem, taking 2L possible values:

X Y ∈ 2L

x(1) 0110
x(2) 1000
x(3) 0110
x(4) 1001
x(5) 0001

2 . . . and train any off-the-shelf multi-class classifier.



Issues with LP

complexity: there is no greedy label-by-label option

imbalance: few examples per class label

overfitting: how to predict new value?

Example

In the Enron dataset, 44% of labelsets are unique (a single
training example or test instance). In del.icio.us dataset, 98%
are unique.



RAkEL
X Y ∈ 2L

x(1) 0110
x(2) 1000
x(3) 0110
x(4) 1001
x(5) 0001

Ensembles of RAndom k-labEL subsets (RAkEL) [27]

Do LP on M subsets⊂ {1, . . . ,L} of size k

X Y123 ∈ 2k

x(1) 011
x(2) 100
x(3) 011
x(4) 100
x(5) 000

X Y124 ∈ 2k

x(1) 010
x(2) 100
x(3) 010
x(4) 101
x(5) 001

X Y234 ∈ 2k

x(1) 110
x(2) 000
x(3) 110
x(4) 001
x(5) 001



Pruned Sets
X Y ∈ 2L

x(1) 0110
x(2) 1000
x(3) 0110
x(4) 1001
x(5) 0001

Ensembles of Pruned label Sets (EPS) [21]

Do LP on M pruned subsets (wrt class values)

Can flip bits to reduce ratio of classes to examples

X Y ∈ 2L

x(1) 0110
x(3) 0110
x(4) 0001
x(5) 0001

X Y ∈ 2L

x(1) 0110
x(2) 1000
x(3) 0110
x(4) 0001
x(4) 1000

X Y ∈ 2L

x(1) 0110
x(2) 1000
x(3) 0110
x(4) 1000
x(5) 0001



Ensemble-based Voting

Most problem-transformation methods are ensemble-based,
e.g., ECC, EPS, RAkEL.

Ensemble Voting

ŷ1 ŷ2 ŷ3 ŷ4

h1(x̃) 1 1 1
h2(x̃) 0 1 0
h3(x̃) 1 0 0
h4(x̃) 1 0 0
score 0.75 0.25 0.75 0

ŷ 1 0 1 0
y4y3y2y1

y123 y234y134y124

x

more predictive power (ensemble effect)

LP can predict novel label combinations



Scaling Up

LSHTC4: Large Scale Hierarchal Text Classification

A wikipedia-scale problem

325, 056 labels

2.4M examples

Even with only 1, 000 features, have to learn over 300M
parameters with BR (linear models)

. . . plus 52, 831M more with CC

. . . plus ensembles (×10,×50?)

LP transformation generates around 1.47M classes



Scaling Up

Our approach [16, 23]:
1 Ignore the predefined hierarchy
2 work with subsets of the labelset (RAkEL)
3 prune them (pruned sets)
4 chain these sets together (classifier chains)
5 mix of base classifiers (centroid, decision trees, SVMs)
6 ensemble with sample features and instances (random

subspace)
7 randomization: splits, pruning, reintroduction, chain

links, base classifier parameters
8 train models in parallel, weight according to score on

hold-out sets (avoid overfitting!)



Pairwise Multi-label
Classification

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1

Create a pairwise transformation, of up to L(L−1)
2 binary

classifiers (all-vs-all), but smaller than in BR
X Y1v2

x(1) 0
x(2) 1
x(3) 0
x(4) 1

X Y1v3

x(1) 0
x(2) 1
x(4) 1

X Y1v4

x(2) 1
x(5) 0

X Y2v3

x(3) 1

X Y2v4

x(1) 1
x(3) 1
x(4) 0
x(5) 0

X Y3v4

x(1) 1
x(4) 0
x(5) 0

Ensemble voting, or calibrated label ranking [7]

Can also model four classes (related to LP)



Hierarchy of MLC (HOMER)

x

��

h1

�� $${{

{1, 4}

��

y5 {2, 3, 6}

��

h2

{{ ��

h3

�� $$yyy1 y4 y2 y4 y6

1 Cluster labels (randomly, k-means) [28], or use
pre-defined hierarchy

2 Apply problem transformation



Multi-label Regularization

Regularization

ŷ = b(h(x)), or ŷ = b(h(x), x)

where

ỹ = h(x) is an initial classification; and

b is some regularizer

Examples:

Meta BR: A second (meta) BR (b) takes as input the output
from an initial BR (h) [9]

Error Correcting Output Codes: bit vector ỹ has been
distorted by noise; attempt to correct it [6]

Subset matching: if ỹ does not exist in training set, match
it to the closest one that does



Problem Transformation
Summary

Two ways of viewing a multi-label problem of L labels:
1 L binary problems (BR),
2 a multi-class problem with 2L classes (LP)

or a combination of these.

General method:
1 Transform data into subproblems (binary or multi-class)
2 Apply some off-the-shelf base classifier
3 (Optional) Regularize
4 (Optional) Ensemble
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Algorithm Adaptation

1 Take your favourite (most suitable) classifier
2 Modify it for multi-label classification

Advantage: a single model, usually very scalable

Disadvantage: predictive performance depends on the
problem domain



k Nearest Neighbours (kNN)
Assign to x̃ the majority class of the k ‘nearest neighbours’

ŷ = argmax
y

∑
i∈Nk

y(i)

where Nk contains the training pairs with x(i) closest to x̃.

4 3 2 1 0 1 2 3
x1

4

3

2

1

0

1

2

3

x
2

c1
c2
c3
c4
c5
c6
?



Multi-label kNN
Assigns the most common labels of the k nearest neighbours

p(yj = 1|x) = 1
k

∑
i∈Nk

y(i)
j

ŷj = argmax
yj∈{0,1}

[p(yj |x) > 0.5]

4 3 2 1 0 1 2 3 4
x1

5

4

3

2

1

0

1

2

3

x
2

000
001
010
011
101
?

For example, [32]. Related to ensemble voting.



Decision Trees

x1

>0.3

~~

≤0.3

!!
y x3

>−2.9

}}

≤−2.9

  x2

=A

~~

=B

!!

y

y y

construct like C4.5 (multi-label entropy [3])

multiple labels at the leaves

predictive clustering trees [12] are highly competitive in
an random forest/ensemble



Conditional Random Fields

x

y2y1

φ1 φ2

φ3

p(y|x) = 1
Z(x)

∏
c

φc(x, y)

=
1

Z(x)
exp{

∑
c

wcfc(x, y)}

where, e.g., φ3(x, y) = φ3(y1, y2) ∝ p(y2|y1). Factors can be
modelled with, e.g., with a problem transformation



Conditional Random Fields

x

y2y1

φ1 φ2

φ3

→

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1

where, e.g., φ3(x, y) = φ3(y1, y2) ∝ p(y2|y1). Factors can be
modelled with, e.g., with a problem transformation



Conditional Random Fields

x

y2y1

φ1 φ2

φ3

where, e.g., φ3(x, y) = φ3(y1, y2) ∝ p(y2|y1). Factors can be
modelled with, e.g., with a problem transformation, but
computational burden is shifted to inference, e.g.,

ŷ = argmax
y∈{0,1}L

f1(x, y1)f2(x, y2)f3(y2, y1)

Gibbs simpling [10] (like an undirected PCC)

Supported combinations [8] (i.e., Y in LP)



Neural Network

y3y2y1

z4z3z2z1

x5x4x3x2x1

Just include an output node for each label.

train with, e.g., gradient descent + error back-propagation



Other Algorithm Adaptations

Max-margin methods / SVMs [29]

Association rules [25]

Boosting [24]

Generative (Bayesian) [15]
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Label Dependence in MLC

Common approach: Present methods to
1 measure label dependence
2 find a structure that best represents this

and then apply classifiers, compare results to BR.



Label Dependence in MLC

Common approach: Present methods to
1 measure label dependence
2 find a structure that best represents this

and then apply classifiers, compare results to BR.

Example

y4y3y2y1

xx

y4y3y2y1

y124 y234

x

Which labels (nodes) to link together? (CC, PGMs)

Which subsets to form from the labelset? (RAkEL)



Label Dependence in MLC

Common approach: Present methods to
1 measure label dependence
2 find a structure that best represents this

and then apply classifiers, compare results to BR.

Problem
Accuracy often indistinguishable to that of random en-
sembles, or slow! (although, may be more compact
and/or interpretable)



Marginal label dependence

Marginal dependence

When the joint is not the product of the marginals, i.e.,

p(y2) 6= p(y2|y1)

p(y1)p(y2) 6= p(y1, y2)
Y1 Y2

Estimate from co-occurrence frequencies in training data



Marginal label dependence
Example

amazed happy relaxing quiet sad angry

amazed

happy

relaxing

quiet

sad

angry

Figure: Music dataset - Mutual Information



Marginal label dependence
Example

beach sunset foliage field mountain urban

beach

sunset

foliage

field

mountain

urban

Figure: Scene dataset - Mutual Information



Exploiting marginal dependence

A Toy Dataset

X1 X2 Y1 Y2 Y3

0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 0

Measure marginal label dependence (i.e., do labels co-occur
frequently, or does one exclude the other?).



Exploiting marginal dependence
A Toy Dataset

X1 X2 Y1 Y2 Y3

0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 0

Measure marginal label dependence (i.e., do labels co-occur
frequently, or does one exclude the other?).

But all labels are interdependent! For example,

p̂(y2 = 1|y1 = 1) 6= p̂(y2 = 1)

1/3 > 1/4

Could use a threshold, or statistical significance, . . .
But how does this relate to classification, p(yj |x)?



Conditional label dependence

Conditional dependence

. . . conditioned on input observation x.

p(y2|y1, x) 6= p(y2|x) X

Y1 Y2

Have to build and measure models

Indication of conditional dependence if

the performance of LP/CC exeeds that of BR

errors among the binary models are correlated



Conditional label dependence

Conditional independence

. . . conditioned on input observation x.

p(y2) 6= p(y2|y1)

, but p(y2|x) = p(y2|, y1, x)
X

Y1 Y2 vs

X

Y1 Y2

Have to build and measure models

Indication of conditional dependence if

the performance of LP/CC exeeds that of BR

errors among the binary models are correlated



Exploiting conditional
dependence

A Toy Dataset

X1 X2 Y1 Y2 Y3

0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 0

Measure conditional label dependence (build models,
measure the difference in error rate).



Exploiting conditional
dependence

A Toy Dataset

X1 X2 Y1 Y2 Y3

0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 0

Measure conditional label dependence (build models,
measure the difference in error rate).

But building models is expensive!

Which structure to construct?



Exploiting conditional
dependence

A Toy Dataset

O
R

A
N

D

X
O

R

X1 X2 Y1 Y2 Y3

0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 0

Oracle: complete conditional independence!

Complete conditional independence,

p(Yj |Yk ,X1,X2) = p(Yj |X1,X2), ∀j, k : 0 < j < k ≤ L

Then the binary relevance (BR) classifier should suffice?



The LOGICAL Problem

or and xor

x

xorandor

x

or,and,xor

x

Figure: BR (left), CC (middle), LP (right)

Table: The LOGICAL problem, base classifier logistic regression.

Metric BR CC LP

HAMMING SCORE 0.83 1.00 1.00
EXACT MATCH 0.50 1.00 1.00

Why didn’t BR work?



XOR Solution

or and xor

x

orandxor

x

xorandor

x

Only one of these works (with greedy inference)!

The ground truth (oracle) is

p(yXOR|yAND, x) = p(yXOR|x)

but, recall: we have an estimation of this,

f̂ (yXOR|yAND, x) 6= f̂ (yXOR|x)

(finite data, finite training time, limited class of model f̂ ,
i.e., linear): dependence depends on the model!



Solutions

1 Use a suitable structure
2 Use a suitable base classifier
3 Ensure that labels are conditionally independent.



Solutions

1 Use a suitable structure How to find it?
2 Use a suitable base classifier Which one is suitable?
3 Ensure that labels are conditionally independent. How to

do that?

Main limiting factor: computational complexity.



The LOGICAL Problem
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Figure: Binary Relevance (BR): linear decision boundary (solid line,
estimated with logistic regression) not viable for YXOR label



Solution via Structure
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Figure: Solution via structure: linear model now applicable to YXOR



Solution via Structure

orandxor

x

Figure: Solution via structure: two labels have augmented decision
space

Can also use undirected connections

directionality not an issue,

but implies greater computational burden (≈ LP)

. . . possibly shifted to inference (≈ PCC, CDN)



Solution via Multi-class
Decomposition
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Model YOR,AND,XOR|x1 ,x2

Y[OR,AND,XOR] =[0,0,0]

Y[OR,AND,XOR] =[1,0,1]

Y[OR,AND,XOR] =[1,1,0]

or,and,xor

x

Figure: Label Powerset (LP): solvable with one-vs-one multi-class
decomposition for any (e.g., linear) base classifier



Solution via Multi-class
Decomposition
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Model YOR,AND,XOR|x1 ,x2

Y[OR,AND,XOR] =[0,0,0]

Y[OR,AND,XOR] =[1,0,1]

Y[OR,AND,XOR] =[1,1,0]

or,xorand

x

Figure: Label Powerset (LP): solvable with one-vs-one multi-class
decomposition for any (e.g., linear) base classifier. Also possible
with RAkEL subsets YOR,XOR and YAND



Solution via Con. Independence
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Figure: Solution via non-linear (e.g., random RBF) transformation
on input to new space z (creating independence).



Solution via Suitable
Base-classifier

x1
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zz
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$$x2
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x2
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1

##

[0, 0, 0] [0, 1, 1] [1, 1, 0]

Figure: Solution via non-linear classifier (e.g., Decision Tree). Leaves
hold examples, where y = [yOR, yAND, yXOR]



On Real World Problems . . .
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Figure: Music dataset, kernel PCA



Latent Variables

p(y|x) =
∑

z p(x, y, z)
p(x)

=
1
Z

∑
z

p(x, y, z)

y3y2y1

x1 x2 x3 x4 x5 vs

y3y2y1

z4z3z2z1

x5x4x3x2x1

Can view label dependencies as having marginalized out
latent variables



Inner Layer Methods

1 Use an inner layer
z = f(x), z ∈ RH

2 Apply a classifier
y = h(z)

y2y1

z4z3z2z1

x5x4x3x2x1

PCA, CCA [17]

Kernel PCA [29]

Mixture models [15]

Clustering [28]

Compressive Sensing [11]

Deep Learning [18]

Auto Encoders



Another look: Problem
Transformation

X1 X2 X3

Y1

Y2

Y3

Y3Y2Y1

Y12 Y23

X5X4X3X2X1

Figure: Methods CC and RAkEL (among others) can be viewed as
using an inner layer [18].



What about marginal
dependence?

Can be seen as a kind of constraint

used for regularization
(recall: e.g., ECOC, subset matching)



Label Dependence: Summary

Marginal dependence for regularization
Conditional dependence

. . . depends on the model

. . . may be introduced

Should consider together:
base classifier
structure
inner layer

An open problem

Much existing research is relevant
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Multi-label Evaluation
In single-label classification, simply compare true label y with
predicted label ŷ [or p(y|x̃)].What about in multi-label
classification?

Example

If true label vector is y = [1, 0, 0, 0], then ŷ =?

u
r
b
a
n

m
o
u
n
t
a
i
n

b
e
a
c
h

f
o
l
i
a
g
e

1 0 0 0
1 1 0 0
0 0 0 0
0 1 1 1

compare bit-wise? too lenient?

compare vector-wise? too strict?



Hamming Loss

Example

y(i) ŷ(i)

x̃(1) [1 0 1 0] [1 0 0 1]
x̃(2) [0 1 0 1] [0 1 0 1]
x̃(3) [1 0 0 1] [1 0 0 1]
x̃(4) [0 1 1 0] [0 1 0 0]
x̃(5) [1 0 0 0] [1 0 0 1]

HAMMING LOSS =
1

NL

N∑
i=1

L∑
j=1

I[ŷ(i)
j 6= y(i)

j ]

= 0.20



0/1 Loss

Example

y(i) ŷ(i)

x̃(1) [1 0 1 0] [1 0 0 1]
x̃(2) [0 1 0 1] [0 1 0 1]
x̃(3) [1 0 0 1] [1 0 0 1]
x̃(4) [0 1 1 0] [0 1 0 0]
x̃(5) [1 0 0 0] [1 0 0 1]

0/1 LOSS =
1
N

N∑
i=1

I(ŷ(i) 6= y(i))

= 0.60



Other Metrics
JACCARD INDEX – often called multi-label ACCURACY

RANK LOSS – average fraction of pairs not correctly ordered
ONE ERROR – if top ranked label is not in set of true labels
COVERAGE – average “depth” to cover all true labels
LOG LOSS – i.e., cross entropy
PRECISION – predicted positive labels that are relevant
RECALL – relevant labels which were predicted
PRECISION vs. RECALL curves
F-MEASURE

micro-averaged (‘global’ view)
macro-averaged by label (ordinary averaging of a binary
measure, changes in infrequent labels have a big impact)
macro-averaged by example (one example at a time,
average across examples)

For general evaluation, use multiple and contrasting
evaluation measures!



HAMMING LOSS vs. 0/1 LOSS
Hamming loss

evaluation by example, suitable for evaluating

ŷj = argmax
yj∈{0,1}

p(yj |x)

i.e., BR
favours sparse labelling
does not benefit directly from modelling label
dependence

0/1 loss
evaluation by label, suitable for evaluating

y = argmax
y∈{0,1}L

p(y|x)

i.e., PCC, LP
does not favour sparse labelling
benefits from models of label dependence



HAMMING LOSS vs. 0/1 LOSS

Example: 0/1 LOSS vs. HAMMING LOSS

y(i) ŷ(i)

x̃(1) [1 0 1 0] [1 0 0 1]
x̃(2) [1 0 0 1] [1 0 0 1]
x̃(3) [0 1 1 0] [0 1 0 0]
x̃(4) [1 0 0 0] [1 0 1 1]
x̃(5) [0 1 0 1] [0 1 0 1]

HAM. LOSS 0.3

0/1 LOSS 0.6

Usually cannot minimize both at the same time . . .

. . . unless: labels are independent of each other! [5]



HAMMING LOSS vs. 0/1 LOSS

Example: 0/1 LOSS vs. HAMMING LOSS

y(i) ŷ(i)

x̃(1) [1 0 1 0] [1 0 1 1]
x̃(2) [1 0 0 1] [1 1 0 1]
x̃(3) [0 1 1 0] [0 1 1 0]
x̃(4) [1 0 0 0] [1 0 1 0]
x̃(5) [0 1 0 1] [0 1 0 1]

Optimize HAMMING LOSS

. . .

HAM. LOSS 0.2

0/1 LOSS 0.8

. . . 0/1 LOSS goes up

Usually cannot minimize both at the same time . . .

. . . unless: labels are independent of each other! [5]



HAMMING LOSS vs. 0/1 LOSS

Example: 0/1 LOSS vs. HAMMING LOSS

y(i) ŷ(i)

x̃(1) [1 0 1 0] [0 1 0 1]
x̃(2) [1 0 0 1] [1 0 0 1]
x̃(3) [0 1 1 0] [0 0 1 0]
x̃(4) [1 0 0 0] [0 1 1 1]
x̃(5) [0 1 0 1] [0 1 0 1]

Optimize 0/1 LOSS . . .

HAM. LOSS 0.4

0/1 LOSS 0.4

. . . HAMMING LOSS goes up

Usually cannot minimize both at the same time . . .

. . . unless: labels are independent of each other! [5]



HAMMING LOSS vs. 0/1 LOSS

Example: 0/1 LOSS vs. HAMMING LOSS

y(i) ŷ(i)

x̃(1) [1 0 1 0] [0 1 0 1]
x̃(2) [1 0 0 1] [1 0 0 1]
x̃(3) [0 1 1 0] [0 0 1 0]
x̃(4) [1 0 0 0] [0 1 1 1]
x̃(5) [0 1 0 1] [0 1 0 1]

Usually cannot minimize both at the same time . . .

. . . unless: labels are independent of each other! [5]



Threshold Selection

Methods often return a posterior probability, or ensemble
votes p(x̃). Use a threshold of 0.5 ?

ŷj =

{
1, pj(x̃) ≥ 0.5
0, otherwise

Example with threshold of 0.5

x̃(i) y(i) p(x̃(i)) ŷ(i) := I[p(x̃(i)) ≥ 0.5]
x̃(1) [1 0 1 0] [0.9 0.0 0.4 0.6] [1 0 0 1]
x̃(2) [0 1 0 1] [0.1 0.8 0.0 0.8] [0 1 0 1]
x̃(3) [1 0 0 1] [0.8 0.0 0.1 0.7] [1 0 0 1]
x̃(4) [0 1 1 0] [0.1 0.7 0.4 0.2] [0 1 0 0]
x̃(5) [1 0 0 0] [1.0 0.0 0.0 1.0] [1 0 0 1]



Threshold Selection
Methods often return a posterior probability, or ensemble
votes p(x̃). Use a threshold of 0.5 ?

ŷj =

{
1, pj(x̃) ≥ 0.5
0, otherwise

Example with threshold of 0.5

x̃(i) y(i) p(x̃(i)) ŷ(i) := I[p(x̃(i)) ≥ 0.5]
x̃(1) [1 0 1 0] [0.9 0.0 0.4 0.6] [1 0 0 1]
x̃(2) [0 1 0 1] [0.1 0.8 0.0 0.8] [0 1 0 1]
x̃(3) [1 0 0 1] [0.8 0.0 0.1 0.7] [1 0 0 1]
x̃(4) [0 1 1 0] [0.1 0.7 0.4 0.2] [0 1 0 0]
x̃(5) [1 0 0 0] [1.0 0.0 0.0 1.0] [1 0 0 1]

. . . but would eliminate two errors with a threshold of 0.4 !



Threshold Selection

Threshold calibration strategies:

Ad-hoc, e.g., t = 0.5

Internal validation, e.g., t ∈ {0.1, 0.2, . . . , 0.9}
PCut: such that the training data and test data have
similar average number of labels/example

Can be done efficiently.
Can also calibrate tj for each label individually.
Assumes training set similar to test set (i.e., not ideal for
data streams)

Can be viewed as another form of regularization

ŷ = b(h(x̃))



Threshold Selection

Threshold calibration strategies:

Ad-hoc, e.g., t = 0.5

Internal validation, e.g., t ∈ {0.1, 0.2, . . . , 0.9}

PCut: such that the training data and test data have
similar average number of labels/example

Can be done efficiently.
Can also calibrate tj for each label individually.
Assumes training set similar to test set (i.e., not ideal for
data streams)

Can be viewed as another form of regularization

ŷ = b(h(x̃))



Threshold Selection
Threshold calibration strategies:

Ad-hoc, e.g., t = 0.5
Internal validation, e.g., t ∈ {0.1, 0.2, . . . , 0.9}
PCut: such that the training data and test data have
similar average number of labels/example

t̂ = argmin
t

∣∣∣ 1
N

∑
i,j

I(p(i)
j > t)

︸ ︷︷ ︸
test data

− 1
N

∑
i,j

y(i)
j︸ ︷︷ ︸

train data

∣∣∣
Can be done efficiently.
Can also calibrate tj for each label individually.
Assumes training set similar to test set (i.e., not ideal for
data streams)

Can be viewed as another form of regularization

ŷ = b(h(x̃))



Various Real-World Concerns

In data streams, label dependence (and therefore,
appropriate structures/transformations/base classifiers)

may not be known in advance
must learn it incrementally
and adapt to change over time (concept drift)
New labels must be incorporated, old labels phased out

Labels may be missing from training data,
but we don’t know when they’re missing (non-relevance 6=
missing)
Labelling is more intensive per example (affects both
manual labelling and active learning)
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Summary

Multi-label classification

Can be approached via problem transformation or
algorithm adaptation

Label dependence and scalability are the main themes

An active area of research and a gateway to many related
areas



Resources

Overview [26]

Review/Survey of Algorithms [33]

Extensive empirical comparison [14]

Some slides: A, B, C

http://users.ics.aalto.fi/jesse/

http://cse.seu.edu.cn/conf/mld10/files/mld10_invitedtalk.pdf
http://ocw.upm.es/ciencia-de-la-computacion-e-inteligencia-artificial/machine-learning/contenidos/11.Multilabel.pdf
http://www.ngdata.com/knowledge-base/icml-2013-tutorial-multi-target-prediction/
http://users.ics.aalto.fi/jesse/


Software & Datasets

Mulan (Java)

Meka (Java)

Scikit-Learn (Python) offers some multi-label support

Clus (Java)

LAMDA (Matlab)

Datasets

http://mulan.sourceforge.net/datasets.html

http://meka.sourceforge.net/#datasets

http://scikit-learn.org/stable/modules/multiclass.html
http://mulan.sourceforge.net/datasets.html
http://meka.sourceforge.net/#datasets


MEKA

A WEKA-based framework for multi-label classification
and evaluation

support for data-stream, semi-supervised classification

http://meka.sourceforge.net

http://meka.sourceforge.net


A MEKA Classifier
package weka.classifiers.multilabel;
import weka.core.∗;

public class DumbClassifier extends MultilabelClassifier {

/∗∗
∗ BuildClassifier
∗/

public void buildClassifier (Instances D) throws Exception {
// the first L attributes are the labels
int L = D.classIndex();
}

/∗∗
∗ DistributionForInstance− return the distribution p(y[j ]|x)
∗/

public double[] distributionForInstance(Instance x) throws Exception {
int L = x.classIndex();
// predict 0 for each label
return new double[L];
}
}
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