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Data Streams

A data stream,
x1, x2, . . . , xt , . . .

where, at real time t we observe xt , which comes from some
concept (which we don't observe directly):

xt ∼ Pt

yt = 0

yt = 1

Electricity dataset (left), image [1] (right)

Applications: IoT, energy/tra�c and demand prediction,
monitoring and tracking, event and fraud detection, click/web logs,
�nance, reinforcement learning, . . . .

https://www.howtogeek.com/68886/how-to-configure-your-router-for-network-wide-url-logging/
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Requirements

To deploy a model in the data stream setting, we require:

1 Prediction/action done immediately (ŷt = ht(xt) at time t)

2 Computational time spent per instance must be less that the
rate of arrival
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Streaming Classi�cation
Supervised ML models are often studied in the context of streams.

Common assumptions found in the literature

1 Speed and size of stream implies instance-incremental learning
(at most a single look at each data point)

2 The true label of data points become available
(providing a stream of training examples)

3 No temporal dependence

4 Concept drift will occur

Some observations:

Assumption 1 is unnecessary

Assumption 2: Where do true labels from?

A human � then contradicts 1. (in most cases)
The future1 � then contradicts 3. � it is a time series

Assumptions 3 and 4 are contradictory

1e.g., predicting the weather � true label comes the next day
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Data Streams as Time Series
Benchmark datasets often look like time series:

yt = 0

yt = 1

Prediction of Electricity demand

Even when points sampled iid wrt current concept, a time series
forms in the coe�cients, and/or in the error signal:
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Concept drift ⇒ temporal dependence:

xt+1xt−1 xt

ct+1

xt+1

ct−1

xt−1

ct

xt xt+1xt−1 xt

Time series tasks:

Filtering

Forecasting

State labelling/change point detection

Event/anomaly detection

. . .

(no supervised streaming classi�cation!)

A data stream is a time series with constraints (prediction required
now, update faster than rate of arrival).



9

Fast and Slow Learning
A framework for Fast and Slow learning
Invest in higher level (slow) processes
Batch and stream learning need not be mutually exclusive
Time series methods, weakly labeled and unlabeled data
Awareness of multi-input multi-output setting

Built into Scikit MultiFlow framework: https://scikit-multiflow.github.io/

Montiel et al. 2018a

https://scikit-multiflow.github.io/
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Multi-label Learning

Input, e.g.,

x =

Prediction/output, e.g.,

ŷ = [1, 0, 1, 0, 0]⇔ {beach, foliage}

i.e., multiple outputs per instance.
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Multi-label Problem [Y1, . . . ,YL] ∈ {0, 1}L
X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4

1 0.1 3 A NO 0 1 1 0

0 0.9 1 C YES 1 0 0 0

0 0.0 1 A NO 0 1 0 0

1 0.8 2 B YES 1 0 0 1

1 0.0 2 B YES 0 0 0 1

0 0.0 3 A YES ? ? ? ?

x[1]

h

x[2] x[3] x[4] x[5]

y[1] y[2] y[3] y[4]
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Why not Independent Classi�ers?

y4y3y2y1

x

If we model labels together, we can achieve

Better predictive performance

Better computational performance

Interpret relationships among labels (i.e., interpretability)

Approach structured-output prediction tasks
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Classi�er Chains

y4y3y2y1

x

Predictions cascade along a chain (as additional features)

Has a probabilistic interpretation:

ŷ = argmax
y∈{0,1}L

P(y1|x)
L∏

j=2

P(yj |x, y1, . . . , yj−1)

Inference becomes a search (for best ŷ, in {0, 1}L space); e.g.,
greedy, Monte Carlo search, ε-greedy, beam search.

Read, Martino, and Luengo, Pat. Rec. 2014
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Ordering/Structuring the Labels

1 Existing hierarchy? May not be useful

Only models positive dependence (if human-de�ned)
No guarantee of suitability for chosen classi�ers

2 Based on label dependence? It depends (on classi�ers,
inference, . . . ); consider:

or and xor

x

xorandor

x

orandxor

x

Metric (left) (middle) (right)

Hamming score 0.83 1.00 0.83

Exact match 0.50 1.00 0.50
Logistic regression at each node hj , greedy inference

3 Hill-climbing in the label-structure space: Slow(!), but

Many local maxima (easy to reach) � i.e., it works!
Can make use of sub-optimal models that were trialled
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Classi�er Chains: Why it Works

As a probabilistic graphical model:

y3y2y1

x

vs as a neural network (z delay nodes simply carry forward value):

x

y1z1

y2z2 z3

y3

it's deep in the label space!
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Advantages vs standard neural network?

x

y1z1

y2z2 z3

y3

y3y2y1

z4z3z2z1

z4z3z2z1

x5x4x3x2x1

Just apply `o�-the-shelf' [deep] neural net?
Dependence is modelled via the hidden layer(s)
Well-established, popular, competitive

But with classi�er chains:
The `hidden' nodes come `for free' (they're not hidden): faster
training, less data required
A form of transfer learning

Observation: a bad/outdated prediction does
not mean a bad representation!
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Multi-Output Regression

X1 X2 X3 X4 X5 Y1 Y2 Y3
1 0.1 3 A NO 37.00 25 0.88
0 0.9 1 C YES -22.88 22 0.22
0 0.0 1 A NO 19.21 12 0.25
1 0.8 2 B YES 88.23 11 0.77

1 0.0 2 B YES ? ? ?

y4y3y2y1

x5x4x3x2x1

y4y3y2y1

x5x4x3x2x1

Individual regressors � directly applicable.

Chains

greedy inference � directly applicable, but may be pointless!
with probabilistic inference � not tractable, but we can sample
if we have p(yj |x, y1, . . . , yj−1).
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Regressor Chains
Results of chains under MSE (mean squared error) no better than
using individual models / not interesting, unless

Predictions provide an improved (non-linear) representation.
Non-isotropic (state space models; where xj is seen at `time' j)
We are interested in interpretation/explainability, e.g.,

Anomaly detection
Missing-value imputation

New label concepts arrive later (we can transfer learning),
make computational time savings.
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Route Forecasting

Create `personal nodes' for a traveller

Model and predict routes using classi�er chains

An advantage with relatively little training data and vs other
methods (e.g., HMM, RNN)

Personal nodes of a traveller and a predicted trajectory

Read, Martino, and Hollmén, Pat. Rec. 2017
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Missing-Value Imputation

Some values in the stream are missing!

Turn the stream into multi-output samples, train, and predict
(impute) missing values.

Related to tasks in recommender systems

A set/stream of data transformed into a multi-output prediction problem.

Montiel et al., PAKDD 2018, and manuscript under review
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Anomaly Detection and Interpretation

Create `random threads' (classi�er/regressor chain cascades)
through feature space and time (window)

Monitor error spaces for anomalies

Generate likely paths over the `gap'
(expand the number of samples if necessary)

Impute this (treat it as a missing value) prior to using as a
training example
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Continual Learning

In reinforcement learning,

RewardState

Actions

Reward signal is sparse

Self-train on own surrogate reward, then use it as a feature.

Recall: Incorrect predictions are not useless representations

i.e., build up representation; transfer learning.

Work in progress . . .
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