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Time Series

x1, x2, . . . , xt , . . .

generated by some process x ∼ p(X ) in the domain we are
interested in. Measurements may be continuous, xt ∈ RD or
discrete, xt ∈ ND

+; across time t. May be associated with
unobserved signal yt .

yt = 0

yt = 1

Time series xt ∈ R5 associated with state yt ∈ {0, 1}.
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Examples of time series data:
Electricity demand for a city
Sensor measurements on equipment in an aircraft
Number of calls to an insurance service
Light-sensor measurements (and movement through a room)
Smartphone GPS and signal strength measurements of urban
travellers (and their predicted trajectory)
EEG and ECG signals obtained during sleep
Cellular growth in trees
Environmental measurements (temperature, humidity)

———
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Time Series Tasks
Filtering (estimate) y1, . . . , yt−1, yt from observations
x1, . . . , xt−1, xt
Forecasting (predict) xt+1, xt+2, . . . from time t.
Embedding: Describe a time series {x1, . . . , xT} as a vector
φ = [φ1, . . . , φN ] of fixed length N.
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Clustering
Classification
Motif extraction
Novelty/anomaly detection
Query by content
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Filtering
Given observations (time series)

{x1, x2, . . . , xt , . . .}

we want a model f to predict corresponding

{̂y1, ŷ2, . . . , ŷt , . . .}
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Traditional Methods
Finite impulse response (FIR) filter
Moving average, exponential smoothing (low-pass filters)
Kalman filter, particle filters
ARIMA (Auto-Regressive Integrated Moving Average)

y1 y2 y3 y4

x1 x2 x3 x4

yt = f (w1xt−0 + · · ·+ wkxt−k) + εt

with some weights w = [w1, . . . ,wk ] (window size k). This is a
convolution with kernel w.

Robust and well-understood
Need to be hand-crafted, calibration by domain expert
else not suitable for multiple dimensions; complex problems
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Machine Learning for Filtering

Given training data, we can design a machine learning approach
(e.g., artificial neural networks, decision trees, . . . ), on

Xt−4 Xt−3 Xt−2 Xt−1 Xt Yt

1 A 2.3 1.8 -3 -24
A 2.3 1.8 -3 4 -28
2.3 1.8 -3 4 B -32
1.8 -3 4 B 3 -43
. . . . . . . . . . . . . . . . . .
T 39 3 4 0.1 ?

i.e., model
yt = f (xt−4, . . . , xt ; θ) + ε

The decision making and interpretation is relegated to the learner.
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Example: Predicting Celular Growth in Scots Pine

6 sites in Finland and France, of Scots pine
Interested in modelling cellular growth under different latitude,
altitude, . . .
Models must be carefully crafted, parametrized, and adjusted
by domain experts, per site.

Work with Liisa Kulmala et al. @ University of Helsinki, and LERFOB, INRA, AgroParisTech.
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Example: Predicting Celular Growth in Scots Pine
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Environmental measurements (temperature, humidity, . . . ).
Some cell-growth data (from micro-core samples and counts
during growth season) over 3–4 years

Work with Liisa Kulmala et al. @ University of Helsinki, and LERFOB, INRA, AgroParisTech.
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Domain experts were using numerous functions, e.g., growth
timing variable (left) and heat sum (right),
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Temperature response variable

e.g., where τt = temperature and week t,

zt = 1τt>c

[
1

1+ exp(−βτt)

]
and c , β are per-site parameters.

Assembled into a differential equation
About 4-5 parameters to be hand-selected per site
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Data-driven model to parametrize and combine expert-inspired
functions, for each site
Achieved accuracy to within a fraction of a cell per week
Using decision tree learners, interpretation was possible (e.g.,
how far back to take into account temperature measurements)
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Time-Series Forecasting (Prediction)
Given

x1, x2, . . . , xt

we want a model f to predict

x̂t+1, x̂t+2, . . . , x̂t+`
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Traditional Methods

Naive Forecasting (rain today = rain tomorrow),

x̂t+1 = xt

Often effective.
Moving average (mean of last k observations)

x̂t+1 = w>x

on window x = [xt−(k−1), . . . , xt ], w = [ 1k , . . . ,
1
k ].

Auto-regressive linear fit on previous k points, and extrapolate.
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Machine Learning for Forecasting

Formulating a data-driven supervised learning problem:

Xt−` X... Xt−2 Xt−1 Xt Xt+1
1 A 2.3 1.8 -3 4
A 2.3 1.8 -3 4 B
2.3 1.8 -3 4 B 3
1.8 -3 4 B 3 -7
. . . . . . . . . . . . . . . . . .
T 39 3 4 0.1 ?

i.e., model
x̂t+1 = f (xt−4, . . . , xt ; θ)

(we can plug in x̂t+1 and propagate); or estimate a window directly:

x̂t+1, . . . , x̂t+k = f (xt−4, . . . , xt)
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Machine Learning for Forecasting
Formulating a data-driven supervised learning problem:
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Example: Trajectory Estimation
Collected data of travellers1: GPS coordinates, signal strength,
battery level, current time, . . .
Predict future trajectory from current trajectory

1All participants volunteered to install App; share data

Work with Jaakko Hollmèn et al. @ Aalto University



18

Example: Predictive Maintenance of Aircraft
Sensor readings from aircraft and textual description of
observations
Predict warnings/required replacement of components
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Work with DaSciM team @ École Polytechnique
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Embedding Time Series
We seek to turn variable-length time series {x(i)1 , . . . , x(i)Ti

}Mi=1 into
fixed-length vectors φ(i) = [φ1, . . . , φD ].

2 3 4 5 6 7 8 9
1

0

2

4

6

8

10

2

Time Series Embedding: (x(i)) 2 on time series i = 1, , M

This lets us compare and cluster time series/look for anomalies,
(and classify, if we have the label): measure similarity/distance
between φ(x(i)) and φ(x(2)).
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Example: Modelling and Treating Chronic Insomnia

Goal: (semi-)automate clinical assessment; what kind of
insomnia + treatment recommendation.
Data from patients:

Psychological questionnaires (MMPI, CAS)
EEG and ECG data overnight
Some labels: follow-up tests/questionnaires and biofeedback
results (some patients found success without pharmaceutical
intervention, others not)

Questionnaire data: can take ‘standard’ machine learning
approach, f : X → Y, and inspect feature importance,
statistical correlation wrt to label variable (extent of insomnia,
and improvement); cluster into groups, etc.
Time-series data: different lengths, contains artifacts, subjects
fall asleep at different times, . . . . How to compare?

Work with Olivier Pallanca @ École Polytechnique
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Certain signals are of interest: Spindles, α-waves, β-waves, . . .
Simple embeddings, e.g.,
φ(x(i)) = [spindles/hour, avg freq of spindle].
Detection and labelling by an expert is labour intensive.
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There exist many rule-based methods, e.g., wavelet analysis
But predictive performance is insufficient in many practical
settings
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Deep learning; φ(x(i)) =

Many current solutions are inspired by / related to NLP.
Similar to a ‘simple’ embedding, but more data-driven.

(work in progress)



25

Outline

1 Time Series

2 Filtering

3 Forecasting

4 Embedding

5 Classifier and Regressor Chains

6 Sequential Decision Making



26

Multi-Step-Ahead Forecasting

yt+3yt+2yt+1yt−ℓ, . . . , yt, zt

Direct

yt+3yt+2yt+1yt−w, . . . , yt, zt

Iterated

yt+3yt+2yt+1yt−ℓ, . . . , yt, zt

Classifier/Regressor Chain cascade
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Classifier Chains
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x

For example, where each yt ∈ {0, 1}
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Predictions become input,
across a cascade/chain
Efficient
Probabilistic interpretation:

P(y|x) =
T∏
t=1

P(yt |x, y1, . . . , yt−1)

ŷ = f (x) = argmax
y∈{0,1}3

P(y|x)

Search probability tree (for best
prediction) with AI-search
techniques (Monte-Carlo search,
beam search, A* search, . . . )
Explore structure

Work with Luca Martino et al. @ Univ. Carlos III, École Polytechnique
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Regressor Chains
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e.g., where y ∈ R6,

Sample down the chain

yt+1 ∼ p(yt+1|y1, . . . , yt , x)

More samples = more
hypotheses
Consider different loss
functions

Applications:
Multi-output regression
Tracking
Forecasting
Anomaly detection and
interpretation
Imputation of missing data
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One-Step Decision Theory
Under uncertainty, we wish to assign y∗ = f ∗(x), the best
label/hypothesis, y∗ ∈ Y, given x ∈ RD .

Minimizing conditional expected loss

f ∗ = argmin
f ∈F

∑
y∈Y

`(f (x), y)P(y |x)︸ ︷︷ ︸
EY∼P(Y |x)[`(ŷ ,Y )|x]

aka risk.

under loss function `, which describes our preferences.
In the case of 0/1 loss (1 if y 6= ŷ , else 0),

Maximum a Posteriori

y∗ = argmax
y∈Y

p(x|y)P(y) = argmax
y∈{0,1}

P(y |x)

We can estimate P from the training data.
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An intelligent agent wishes to make a decision to achieve a goal.
The decision which involves the least risk. Another way of looking
at the problem: utility. A rational agent maximizes their expected
utility, not necessarily a simple payoff (e.g., amount of money):

Expected Utility

U(y) =
∑
y∈Y

u(y)p(y)

with satisfaction/utility u(y) for outcome y . Different agents may
have different utility functions, even when ‘payoff’ is the same item.
Instead of labels given input, we can deal with actions given
evidence and belief.

A risk-prone agent will tend to gamble higher stakes
A conservative (risk-adverse) agent will not
A risk-neutral agent only cares about payoff y directly

What about sequential decisions?
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In a Deterministic Environment
(e.g., board games – chess, etc.)
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The state space, e.g., st ∈ {A,B, . . . ,M}
An initial state, e.g., s0 = S
A goal state, e.g., st = M
A set of actions, e.g., at ∈ {1, 2}
A cost for each branch, e.g., Cost(S ,A) = 1

It’s just a search! AI-search techniques applicable (DFS, A∗, . . . ).

What if environment is stochastic?
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Markov Decision Processes (MDP)
MDPs are models that seek to provide optimal solutions for
stocastic sequential decision problems.

MDP = Markov Chain+One-step Decision Theory

Environment

Agent

observationaction

maximizes expected reward.
AWESOME SLIDES:
’Mausam-MarkovDecisionProcesses[Slides].pdf’ Also good:
../Artificial Intelligence - Sequential Decision
Problems [Slides].pdf

'Mausam - Markov Decision Processes [Slides].pdf'
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Now we have a model with
P(s′|s, a) transition function
R(s ′, a, s) reward function

Objective: obtain a policy

π : S 7→ A

which maximizes expected
reward:

E[R0|s0 = s] = E

[ ∞∑
t=0

γtrt(st , at)

]

solution can be found via
dynamic programming! Just need
the model . . .
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Reinforcement Learning

We don’t have the model!

Don’t have transition/reward functions.
No input-output training pairs, just reward signal.
The agent needs to experiment! Exploration vs exploitation.
Deep neural net can learn a model
. . . over millions of iterations.
Emerging applications:

Gameplay
Robotics (usually trained in simulation)
Parameter-tuning, etc. (as a tool)

Transfer learning is promising
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Wrap Up

Time series are everywhere
Established machine learning and AI methods can be applied
Automatically parametrize domain-expert knowledge
Powerful deep learning methodologies can remove intensive
tasks (by an expert), but not (yet) the expert!

Challenges (to move to stronger AI):
Deep neural networks need computational power
. . . and need a lot of labelled data (of high quality)
. . . and are often difficult to interpret.
Agents need to learn in a stochastic environment on a
weak/sparse reward signal.
Reinforcement learning is still underdeveloped, but holds
interesting potential.
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