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Time Series

X1, X2y e ey Xty o

generated by some process x ~ p(X’) in the domain we are
interested in. Measurements may be continuous, x; € RP or

discrete, x; € NE; across time t. May be associated with
unobserved signal y;.
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Time series x; € R® associated with state y; € {0, 1}.



Examples of time series data:
@ Electricity demand for a city
@ Sensor measurements on equipment in an aircraft
@ Number of calls to an insurance service
@ Light-sensor measurements (and movement through a room)

@ Smartphone GPS and signal strength measurements of urban
travellers (and their predicted trajectory)

EEG and ECG signals obtained during sleep

Cellular growth in trees

Environmental measurements (temperature, humidity)
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Time Series Tasks

e Filtering (estimate) yi,...,yt—1,y: from observations
X1, ... Xe—1, X
e Forecasting (predict) X¢41, X¢+2, . .. from time t.

e Embedding: Describe a time series {x1,...,x7} as a vector
¢ = [¢1,...,0n] of fixed length N.

Clustering

Classification

Motif extraction
Novelty/anomaly detection
Query by content
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Filtering

Given observations (time series)

{X1,X2, -, X¢y .o}

we want a model f to predict corresponding

{y17y27"'7yt>"'}

Time Series Filtering




Traditional Methods

e Finite impulse response (FIR) filter

e Moving average, exponential smoothing (low-pass filters)
o Kalman filter, particle filters

e ARIMA (Auto-Regressive Integrated Moving Average)

V]

ye = f(Wixe—o + -+ + Wixe—k) + €t

with some weights w = [wy, ..., wk] (window size k). This is a
convolution with kernel w.

@ Robust and well-understood

@ Need to be hand-crafted, calibration by domain expert

@ else not suitable for multiple dimensions; complex problems



Machine Learning for Filtering

Given training data, we can design a machine learning approach

(e.g., artificial neural networks, decision trees, ...), on
Xi—4a Xi—3 X2 X1 Xt Yt
1 A 23 18 3 | 24
A 23 1.8 3 4 | 28
2.3 1.8 3 4 B | -32
1.8 3 4 B 3 | -43
[ T 39 3 4 01 ] 7 ]

i.e., model
Yr = f(Xt—47 s 7Xt;0) + €

The decision making and interpretation is relegated to the learner.



Example: Predicting Celular Growth in Scots Pine

@ 6 sites in Finland and France, of Scots pine

@ Interested in modelling cellular growth under different latitude,
altitude, ...

@ Models must be carefully crafted, parametrized, and adjusted
by domain experts, per site.

Work with Liisa Kulmala et al. @ University of Helsinki, and LERFOB, INRA, AgroParisTech.



Example: Predicting Celular Growth in Scots Pine

—e— Growth (cells/week)

100 —e— Temperature
—e— Humidity

0 10 20 30 40 50 ° 10 2w0 on 30 40 50
Week Number (t) eek Number (t)

Environmental measurements (temperature, humidity, .. .).

Some cell-growth data (from micro-core samples and counts
during growth season) over 3—4 years

Work with Liisa Kulmala et al. @ University of Helsinki, and LERFOB, INRA, AgroParisTech.



@ Domain experts were using numerous functions, e.g., growth
timing variable (left) and heat sum (right),

Growth timing variable

Temperature response variable
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e.g., where 7; = temperature and week t,

1
S T .
i ¢ [1 + exp(—ﬁrt)]

and ¢, B are per-site parameters.

@ Assembled into a differential equation

@ About 4-5 parameters to be hand-selected per site
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@ Data-driven model to parametrize and combine expert-inspired
functions, for each site

@ Achieved accuracy to within a fraction of a cell per week

@ Using decision tree learners, interpretation was possible (e.g.,
how far back to take into account temperature measurements)
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Time-Series Forecasting (Prediction)

Given
X1y X2, -« 0y X¢

we want a model f to predict

Ret1, Re42y oo Rege

Time Series Forecast

—— X
-0- X




Traditional Methods

o Naive Forecasting (rain today = rain tomorrow),
Re+1 = Xt

Often effective.

e Moving average (mean of last k observations)
Rer1 = w ' x

on window X = [X;_(k—1), -, Xt], W = (%o 3]

o Auto-regressive linear fit on previous k points, and extrapolate.



Machine Learning for Forecasting

Formulating a data-driven supervised learning problem:

Xi—sp X.. Xi—2 Xe—1 Xt Xer1

1 A 2.3 1.8 -3 4

A 2.3 1.8 -3 4 B

2.3 1.8 -3 4 B 3

1.8 -3 4 B 3 -7

l T 39 3 4 0.1 I ?

i.e., model
)?1_—+]_ = f(Xt747 cee 9 Xty 9)

(we can plug in X:+1 and propagate); or estimate a window directly:

Rty s Xepk = f(Xt—47 s 7Xt)



Machine Learning for Forecasting

Formulating a data-driven supervised learning problem:

® % (input)
® ¥, (output)

i.e., model
)?1_—+]_ = f(Xt747 ey Xty 9)

(we can plug in X:+1 and propagate); or estimate a window directly:

Rty Xepk = f(Xt—47 cee 7Xt)



Example: Trajectory Estimation

e Collected data of travellers!

: GPS coordinates, signal strength,
battery level, current time,
@ Predict future trajectory from current trajectory

Device 98. Day 17 (50 nodes) Thu. 20h15

Prediction Confidence: 0.30 (10 min), 0.51 (30 min)

wmaf® © current position
— prev. 5-min trajectory
_|® @ personal nodes
—  3-min route prediction
5-min destination pred. ||
20-min destination pred.

1 .. .
All participants volunteered to install App; share data
Work with Jaakko Hollmén et al. @ Aalto University



Example: Predictive Maintenance of Aircraft
@ Sensor readings from aircraft and textual description of

observations

@ Predict warnings/required replacement of components
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Work with DaSciM team @ Ecole Polytechnique
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Embedding Time

We seek to turn v
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This lets us compare and cluster time series/look for anomalies,
(and classify, if we have the label): measure similarity/distance
between ¢(x()) and ¢(x(?).



Example: Modelling and Treating Chronic Insomnia

@ Goal: (semi-)automate clinical assessment; what kind of
insomnia + treatment recommendation.
o Data from patients:

e Psychological questionnaires (MMPI, CAS)

e EEG and ECG data overnight

o Some labels: follow-up tests/questionnaires and biofeedback
results (some patients found success without pharmaceutical
intervention, others not)

@ Questionnaire data: can take ‘standard’ machine learning
approach, f : X — ), and inspect feature importance,
statistical correlation wrt to label variable (extent of insomnia,
and improvement); cluster into groups, etc.

@ Time-series data: different lengths, contains artifacts, subjects
fall asleep at different times, .... How to compare?

Work with Olivier Pallanca @ Ecole Polytechnique
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o Certain signals are of interest: Spindles, a-waves, 3-waves, ...

e Simple embeddings, e.g.,
$(x()) = [spindles/hour,avg freq of spindle].
@ Detection and labelling by an expert is labour intensive.

N



@ There exist many rule-based methods, e.g., wavelet analysis

@ But predictive performance is insufficient in many practical
settings

Spindle Detection
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Deep learning; ¢(x()) =
4m

convelution 7 affine layer with
-max softmax and
pooling dropout
3region sizes: (234) | [ 2feature
T 2 fiters for each region | | maps for 6 entries [2classes
7x5 e et concatenated
totally 6 filters region size Do

single feature
vector
— \
d=5
|
like

this

movie
very
much
]

;

@ Many current solutions are inspired by / related to NLP.
@ Similar to a ‘simple’ embedding, but more data-driven.

(work in progress)
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Multi-Step-Ahead Forecasting

Direct
)
Iterated

Yt—t5 - Yt, 4t

Classifier/Regressor Chain cascade



Classifier Chains

For example, where each y; € {0,1}

Predictions become input,
across a cascade/chain

Efficient

Probabilistic interpretation:

P(y|x) = H P(yelx, y1, .-, ye-1)

9 = f(x) = argmax P(y|x)
ye{0,1}3
Search probability tree (for best
prediction) with Al-search
techniques (Monte-Carlo search,
beam search, A* search, ...)

Explore structure

Work with Luca Martino et al. @ Univ. Carlos Ill, Ecole Polytechnique



Regressor Chains
e.g., where y € R®,

@ Sample down the chain

andro

* samples

i = sy Yt+1 NP(}/t+1|}/1>---7}/t7X)
' @ More samples = more
s hypotheses
10 o Consider different loss
T functions
Applications:

0.0

Multi-output regression

-0.5

Tracking

o
@ Forecasting
o

Anomaly detection and
interpretation

Imputation of missing data



One-Step Decision Theory

Under uncertainty, we wish to assign y* = *(x), the best
label /hypothesis, y* € ), given x € RP.

Minimizing conditional expected loss

f* = argmin Z ((f(x),y)P(y[x)
feF yey

Ey~pyx (7, Y)Ix]

aka risk.

under loss function ¢, which describes our preferences.
In the case of 0/1 loss (1 if y # y, else 0),

Maximum a Posteriori

y* = argmax p(x|y)P(y) = argmax P(y|x)
yey y€{0,1}

We can estimate P from the training data.



An intelligent agent wishes to make a decision to achieve a goal.
The decision which involves the least risk. Another way of looking
at the problem: utility. A rational agent maximizes their expected
utility, not necessarily a simple payoff (e.g., amount of money):

Expected Utility

yey

with satisfaction/utility u(y) for outcome y. Different agents may
have different utility functions, even when ‘payoff’ is the same item.
Instead of labels given input, we can deal with actions given
evidence and belief.

@ A risk-prone agent will tend to gamble higher stakes
@ A conservative (risk-adverse) agent will not
@ A risk-neutral agent only cares about payoff y directly



An intelligent agent wishes to make a decision to achieve a goal.
The decision which involves the least risk. Another way of looking
at the problem: utility. A rational agent maximizes their expected
utility, not necessarily a simple payoff (e.g., amount of money):

Expected Utility

yey

with satisfaction/utility u(y) for outcome y. Different agents may
have different utility functions, even when ‘payoff’ is the same item.
Instead of labels given input, we can deal with actions given
evidence and belief.

@ A risk-prone agent will tend to gamble higher stakes
@ A conservative (risk-adverse) agent will not
@ A risk-neutral agent only cares about payoff y directly

What about sequential decisions?
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In @ Deterministic Environment
(e.g., board games — chess. etc.)

The state space, e.g., s € {A,B,...,M}
An initial state, e.g.,, 5o = S

A goal state, e.g., 5 = M

A set of actions, e.g., a; € {1,2}

@ A cost for each branch, e.g., Cost(S,A) =1

It's just a search! Al-search techniques applicable (DFS, A%, ...).



In @ Deterministic Environment
(e.g., board games — chess. etc.)

The state space, e.g., s € {A,B,...,M}
An initial state, e.g.,, 5o = S

A goal state, e.g., 5 = M

A set of actions, e.g., a; € {1,2}

@ A cost for each branch, e.g., Cost(S,A) =1

It's just a search! Al-search techniques applicable (DFS, A%, ...).

What if environment is stochastic?



Markov Decision Processes (MDP)

MDPs are models that seek to provide optimal solutions for
stocastic sequential decision problems.

MDP = Markov Chain+ One-step Decision Theory

Environment

observationjaction

Agent



'Mausam - Markov Decision Processes [Slides].pdf'

Now we have a model with
@ P(s'|s, a) transition function
@ R(s,a,s) reward function

Objective: obtain a policy
T:S—= A

which maximizes expected
reward:

E[Ro’So = S] =E

o9]
Z’)/tl’t(st, 3t)]
t=0

solution can be found via
dynamic programming! Just need
the model . ..




Reinforcement Learning

We don’t have the modell

Don't have transition/reward functions.

No input-output training pairs, just reward signal.

The agent needs to experiment! Exploration vs exploitation.
Deep neural net can learn a model

...over millions of iterations.

Emerging applications:
o Gameplay
o Robotics (usually trained in simulation)
o Parameter-tuning, etc. (as a tool)

@ Transfer learning is promising
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Wrap Up

@ Time series are everywhere
o Established machine learning and Al methods can be applied
@ Automatically parametrize domain-expert knowledge
o Powerful deep learning methodologies can remove intensive
tasks (by an expert), but not (yet) the expert!
Challenges (to move to stronger Al):
@ Deep neural networks need computational power
@ ...and need a lot of labelled data (of high quality)
@ ...and are often difficult to interpret.
°

Agents need to learn in a stochastic environment on a
weak /sparse reward signal.

Reinforcement learning is still underdeveloped, but holds
interesting potential.
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