Methods Deep in the Output Space

Jesse Read
Outline

1 Introduction

2 Multi-Output Methods

3 Deep in the Output Space
Classification

We want a model h, which can take inputs in \mathcal{X} and provide a suitable output in \mathcal{Y} (under some suitable loss metric).

Binary classification

$$\mathcal{Y} = \{\text{non_sunset, sunset}\}$$

$$\hat{y} = h(x), \text{ where } \hat{y} \in \mathcal{Y}$$

e.g., $\hat{y} = \text{sunset}$.
Classification

We want a model h, which can take inputs in \mathcal{X} and provide a suitable output in \mathcal{Y} (under some suitable loss metric).

$$x = \text{Multi-class classification}$$

$$\mathcal{Y} = \{\text{sunset, people, foliage, beach, urban}\}$$

$$\hat{y} = h(x), \quad \text{where } \hat{y} \in \mathcal{Y}$$

e.g., $\hat{y} = \text{sunset}$.

Multi-class classification
Classification

We want a model h, which can take inputs in \mathcal{X} and provide a suitable output in \mathcal{Y} (under some suitable loss metric).

$x = \text{Multi-label classification}$

$\mathcal{Y} = \{\text{sunrise, people, foliage, beach, urban}\}$

$\hat{y} = h(x), \text{ where } \hat{y} \subseteq \mathcal{Y}$

e.g., $\hat{y} = \{\text{sunrise, foliage}\} \iff \hat{y} = [1, 0, 1, 0, 0]$ where $\hat{y} \in \{0, 1\}^2$. i.e., multiple labels per instance instead of a single label.
Single-label vs. Multi-label

Single-label Problem \(Y \in \{0, 1\} \)

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(X_4)</th>
<th>(X_5)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>3</td>
<td>A</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.9</td>
<td>1</td>
<td>C</td>
<td>YES</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>A</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
<td>2</td>
<td>B</td>
<td>YES</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>2</td>
<td>B</td>
<td>YES</td>
<td>0</td>
</tr>
</tbody>
</table>

\(0 \) 0.0 3 A YES ?

Multi-label Problem \(Y \subseteq \{\lambda_1, \ldots, \lambda_L\} \)

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(X_4)</th>
<th>(X_5)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>3</td>
<td>A</td>
<td>NO</td>
<td>{\lambda_2, \lambda_3}</td>
</tr>
<tr>
<td>0</td>
<td>0.9</td>
<td>1</td>
<td>C</td>
<td>YES</td>
<td>{\lambda_1}</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>A</td>
<td>NO</td>
<td>{\lambda_2}</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
<td>2</td>
<td>B</td>
<td>YES</td>
<td>{\lambda_1, \lambda_4}</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>2</td>
<td>B</td>
<td>YES</td>
<td>{\lambda_4}</td>
</tr>
</tbody>
</table>

\(0 \) 0.0 3 A YES ?
Single-label vs. Multi-label

Single-label Problem

\[Y \in \{0, 1\} \]

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(X_4)</th>
<th>(X_5)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>3</td>
<td>A</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.9</td>
<td>1</td>
<td>C</td>
<td>YES</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>A</td>
<td>NO</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
<td>2</td>
<td>B</td>
<td>YES</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>2</td>
<td>B</td>
<td>YES</td>
<td>0</td>
</tr>
</tbody>
</table>

| 0 | 0.0 | 3 | A | YES | ? |

Multi-label Problem

\[[Y_1, \ldots, Y_L] \in \{0, 1\}^L \]

<table>
<thead>
<tr>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(X_4)</th>
<th>(X_5)</th>
<th>(Y_1)</th>
<th>(Y_2)</th>
<th>(Y_3)</th>
<th>(Y_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>3</td>
<td>A</td>
<td>NO</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.9</td>
<td>1</td>
<td>C</td>
<td>YES</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>A</td>
<td>NO</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.8</td>
<td>2</td>
<td>B</td>
<td>YES</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>2</td>
<td>B</td>
<td>YES</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

| 0 | 0.0 | 3 | A | YES | ? | ? | ? | ? |

Text Categorization and Tag Recommendation

For example, the IMDb dataset: Textual movie plot summaries associated with genres (labels).

Also: Bookmarks, Bibtex, del.icio.us datasets. E-mail classification, document classification,
Labelling Images

Images are labelled to associated *Scenes* with e.g.,
\(\subseteq \{\text{beach, sunset, foliage, field, mountain, urban}\} \)
Labelling Audio

For example, labelling music with emotions, concepts, etc.

\[\in \{ \text{amazed-surprised, happy-pleased, relaxing-calm, quiet-still, sad-lonely, angry-aggressive} \} \]
Multi-output Learning

We can generalize to multi-class multi-label (multi-output classification):

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>type</th>
<th>gender</th>
<th>group</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>1</td>
<td>M</td>
<td>2</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>4</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>2</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>3</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Multi-output Learning

We can generalize to multi-class multi-label (multi-output classification):

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>type</th>
<th>gender</th>
<th>group</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>1</td>
<td>M</td>
<td>2</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>4</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>2</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>3</td>
<td>M</td>
<td>1</td>
</tr>
</tbody>
</table>

Or to continuous outputs (multi-output regression):

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>amount</th>
<th>age</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>37.00</td>
<td>25</td>
<td>0.88</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>-22.88</td>
<td>22</td>
<td>0.22</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>19.21</td>
<td>12</td>
<td>0.25</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>88.23</td>
<td>11</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Or, a mixture of both nominal and continuous values.
Multi-output Learning

We can generalize to multi-class multi-label (multi-output classification):

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>type</th>
<th>gender</th>
<th>group</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>1</td>
<td>M</td>
<td>2</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>4</td>
<td>F</td>
<td>2</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>2</td>
<td>?</td>
<td>1</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>3</td>
<td>M</td>
<td>1</td>
</tr>
</tbody>
</table>

Or to continuous outputs (multi-output regression):

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
<th>X_5</th>
<th>amount</th>
<th>age</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>37.00</td>
<td>25</td>
<td>0.88</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>-22.88</td>
<td>22</td>
<td>0.22</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>19.21</td>
<td>12</td>
<td>0.25</td>
</tr>
<tr>
<td>x_1</td>
<td>x_2</td>
<td>x_3</td>
<td>x_4</td>
<td>x_5</td>
<td>88.23</td>
<td>11</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Or, a mixture of both nominal and continuous values.
What’s the big deal?

Can’t we just build a separate model for each label separately? (Why should I care about multi-label/multi-output learning?)

– You can build independent models for each output, but with multi-label/multi-output methods, you can achieve:
 - Better predictive performance (up to 20%)
 - Better computational performance (up to orders of magnitude)
 - Discover interesting relationships
 - Find applications in structured-output prediction tasks (e.g., sequence prediction),

But we already have models for this (deep neural nets, CNNs, LSTMs, PGMs, . . .) . . . – You may be able to make them better! (and they can make multi-label learning better)
What’s the big deal?

Can’t we just build a separate model for each label separately?
(Why should I care about multi-label/multi-output learning?)

– You can build independent models for each output, but with multi-label/multi-output methods, you can achieve
 - Better predictive performance (up to 20%)
 - Better computational performance (up to orders of magnitude)
 - Discover interesting relationships among labels
 - Find applications in structured-output prediction tasks (e.g., sequence prediction),
What’s the big deal?

Can’t we just build a separate model for each label separately? (Why should I care about multi-label/multi-output learning?)

– You can build independent models for each output, but with multi-label/multi-output methods, you can achieve
 - Better predictive performance (up to 20%)
 - Better computational performance (up to orders of magnitude)
 - Discover interesting relationships among labels
 - Find applications in structured-output prediction tasks (e.g., sequence prediction),
 - But we already have models for this (deep neural nets, CNNs, LSTMs, PGMs, . . .) . . .
 – You may be able to make them better!
 (and they can make multi-label learning better)
Structured Output Prediction

In structured output prediction: assume a particular structure among outputs, e.g., time, pixels, coordinates, hierarchy, graphs.

In the basic sense: structured output = multi-label with many labels but we may not be able to assume a particular dependence.
Outline

1. Introduction
2. Multi-Output Methods
3. Deep in the Output Space
Individual Classifiers

\[
\hat{y}_j = h_j(x) = \underset{y_j \in \{0, 1\}}{\text{argmax}} P(y_j | x) \quad \triangleright \text{for index } j = 1, \ldots, L
\]

and then,

\[
\hat{y} = h(x) = [\hat{y}_1, \ldots, \hat{y}_4]
\]

\[
= \left[\underset{y_1 \in \{0, 1\}}{\text{argmax}} P(y_1 | x), \ldots, \underset{y_4 \in \{0, 1\}}{\text{argmax}} P(y_4 | x) \right]
\]

\[
= \left[h_1(x), \ldots, h_4(x) \right]
\]

Also known as the binary relevance method (BR) when \(y_j \in \{0, 1\} \).
Why not individual classifiers?

There may be label dependence, i.e.,

\[P(y|x) \neq \prod_{j=1}^{L} P(y_j|x) \]

- usually an appropriate assumption
- usually loss function is non-decomposable, e.g., 0/1 loss (exact match), Jaccard index, rank loss,

Table: Average predictive performance (5 fold CV, Exact Match) from Read et al. 2015. Binary relevance vs Monte-carlo classifier chains.

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>BR</th>
<th>MCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Music</td>
<td>6</td>
<td>0.30</td>
<td>0.37</td>
</tr>
<tr>
<td>Scene</td>
<td>6</td>
<td>0.54</td>
<td>0.68</td>
</tr>
<tr>
<td>Yeast</td>
<td>14</td>
<td>0.14</td>
<td>0.23</td>
</tr>
<tr>
<td>Genbase</td>
<td>27</td>
<td>0.94</td>
<td>0.96</td>
</tr>
<tr>
<td>Medical</td>
<td>45</td>
<td>0.58</td>
<td>0.62</td>
</tr>
<tr>
<td>Enron</td>
<td>53</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>Reuters</td>
<td>101</td>
<td>0.29</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Classifier Chains

Classifier Chains\(^1\) for modelling label dependence,

\[
p(y|x) = p(y_1|x) \prod_{j=2}^{L} p(y_j|x, y_1, \ldots, y_{j-1})
\]

\[
\hat{y} = \arg\max_{y \in \{0,1\}^L} p(y|x)
\]

- Training: Build \(L\) binary base classifiers \(h_1, \ldots, h_L\).
- Prediction: Each classifier provides \(\hat{y}_j = h_j(x)\), which can then be used as an additional attribute: \(h_{j+1}(x, \hat{y}_1, \ldots, \hat{y}_j)\)

\(^1\)Read et al. 2009; Dembczyński, Cheng, and Hüllermeier 2010; Read et al. 2011; Read, Martino, and Luengo 2014.
Making Predictions

Instead of exploring all paths $y \in \{0,1\}^L$, can use some tree search (beam search, Monte Carlo samples, A* search, ...), and then:

$$\text{return } \arg\max_{y \subseteq \{y_t\}_{t=1}^T} P(y|x)$$

where $T \ll 2^L$.
Or, simply greedy (a single path: fast, but prone to error propagation).
Improvements:

- Hill climbing the chain order/structure space
- Large ensembles of random structures/label-subspaces
- Try different base learners

... Huge search spaces. But why does it work?
Improvements:

- Hill climbing the chain order/structure space
- Large ensembles of random structures/label-subspaces
- Try different base learners

... Huge search spaces. But why does it work?

- Label dependence?
 - Not the full answer: difficult to map dependence to good models/interpretations if using very approximate inference such as greedy inference;
 - Appears to work even knowledge of label dependence is theoretically unnecessary (e.g., Hamming loss)
Outline

1. Introduction
2. Multi-Output Methods
3. Deep in the Output Space
Probabilistic graphical model:

vs Neural network \((z_j\text{'s just carry forward input, i.e., delay nodes}),\) i.e., using the greedy inference:
Connection to Deep Learning

Classifier chains (left) vs ‘standard’ neural network\(^2\) (right):

Just apply ‘off-the-shelf’ [deep] neural net?
- Dependence is modelled in the latent layer(s)
- Well-established, popular (again), competitive but requires more parametrization, training iterations.
- In classifier chains, the ‘hidden’ nodes come ‘for free’

\(^2\)e.g., MLP; but note: final layer is not a softmax!
Deep in the Label Space

Using other labels as input

- Allows more powerful (non-linear) decision boundaries . . . even with relatively simple classifiers (\approx activation functions)
- Works well with smaller training datasets, less parameterization/iterations.

So using labels as inputs, helps predicting other labels... Where can we get more labels from?
Meta Labels

We can get labels from other labels\(^3\), e.g., \(y_{S_k} \in S_k \subset \mathcal{Y}\); Or, prune to binary:

\[
z_k = 1 \iff y_{S_k} = s^{(k)}
\]

which decodes easily (via voting/weights) back to labels.

\(^3\)Read, Puurula, and Bifet 2014; Read, Martino, and Hollmén 2017.
Synthetic Labels

We can make up our own labels\(^4\) or use the same labels again:

\[
\begin{align*}
 x_1, x_2, x_3, x_4, x_5 \\
 z_1, z_2 \\
 y_1, y_2
\end{align*}
\]

- Synthetic labels \(\approx\) cascaded basis function expansion
- This can be combined with the meta labels
- Can embed these into deep neural networks
- Can include skip layer, hidden layers (latent variables), etc.

\(^4\)Read and Hollmén 2014; Read and Hollmén 2017, and related work Spyromitros-Xioufis et al. 2016; Cisse, Al-Shedivat, and Bengio 2016
Table: Exact Match, base classifier = logistic regression, except BR$_{RF}$ (random forest)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>BR</th>
<th>BR$_{RF}$</th>
<th>CC</th>
<th>...</th>
<th>CC\ddot{s}L</th>
<th>...</th>
<th>DNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical</td>
<td>0.52</td>
<td>1.00</td>
<td>2</td>
<td>0.64</td>
<td>8</td>
<td>...</td>
<td>1.00</td>
</tr>
<tr>
<td>Music</td>
<td>0.23</td>
<td>0.25</td>
<td>5</td>
<td>0.25</td>
<td>4</td>
<td>...</td>
<td>0.26</td>
</tr>
<tr>
<td>Scene</td>
<td>0.47</td>
<td>0.48</td>
<td>7</td>
<td>0.55</td>
<td>5</td>
<td>...</td>
<td>0.58</td>
</tr>
<tr>
<td>Yeast</td>
<td>0.14</td>
<td>0.10</td>
<td>9</td>
<td>0.18</td>
<td>3</td>
<td>...</td>
<td>0.18</td>
</tr>
<tr>
<td>Medical</td>
<td>0.45</td>
<td>0.68</td>
<td>4</td>
<td>0.46</td>
<td>6</td>
<td>...</td>
<td>0.68</td>
</tr>
<tr>
<td>Enron</td>
<td>0.11</td>
<td>0.12</td>
<td>6</td>
<td>0.12</td>
<td>5</td>
<td>...</td>
<td>0.13</td>
</tr>
<tr>
<td>Reuters</td>
<td>0.45</td>
<td>0.47</td>
<td>4</td>
<td>0.47</td>
<td>3</td>
<td>...</td>
<td>0.47</td>
</tr>
<tr>
<td>Ohsumed</td>
<td>0.15</td>
<td>0.17</td>
<td>2</td>
<td>0.15</td>
<td>3</td>
<td>...</td>
<td>0.15</td>
</tr>
<tr>
<td>M.Mill</td>
<td>0.09</td>
<td>0.12</td>
<td>2</td>
<td>0.12</td>
<td>3</td>
<td>...</td>
<td>0.11</td>
</tr>
<tr>
<td>Bibtex</td>
<td>0.10</td>
<td>0.10</td>
<td>7</td>
<td>0.11</td>
<td>4</td>
<td>...</td>
<td>0.16</td>
</tr>
<tr>
<td>Corel5k</td>
<td>0.01</td>
<td>0.01</td>
<td>5</td>
<td>0.01</td>
<td>4</td>
<td>...</td>
<td>0.02</td>
</tr>
<tr>
<td>avg rank</td>
<td>6.95</td>
<td>4.82</td>
<td>4.36</td>
<td>...</td>
<td>2.91</td>
<td>...</td>
<td>5.82</td>
</tr>
</tbody>
</table>

We (CCSL) outperform baselines, random-forest baseline, and ‘deep neural network’ (DNN; two hidden layers).
LSHTC4: Large scale text classification

A Kaggle Challenge based on a large dataset created from Wikipedia. The dataset is multi-class, multi-label and hierarchical. The number of categories is roughly 325,000 and number of the documents is 2,400,000, described by about 1,600,000 features.

Winning solution\(^a\) was much faster and higher-performing than employing separate models (ignoring the hierarchy).

\(^a\)Puurula, Read, and Bifet 2014.
Demand Prediction

Outputs represent the demand at multiple points.

Inputs: time, day, etc., earlier demand.
Route/Destination Forecasting

Personal nodes of a traveller and predicted trajectory;
Output: predicted trajectory (time steps \times \text{waypoints})\textsuperscript{\text{a}}.

\textsuperscript{\text{a}}Read, Martino, and Hollmén 2017.
Missing-data imputation (multiple values)

Form multi-output datasets, train, and predict (input) missing valuesa.

aMontiel et al. 2018.
Reinforcement learning

An agent can carry out multiple actions, model state and reward across multiple timesteps, etc.
Summary

Multi-output methods which are deep in the output space.

- Predicting multiple outputs simultaneously
- Interconnections with other areas (probabilistic graphical models, neural networks, structured-output prediction, transfer learning, . . .)
- Can perform well, and perform robustly with minimal fiddling/expertise/prior knowledge
- Many applications
Methods Deep in the Output Space

Jesse Read