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Data Streams

In a data stream,
(xt , yt) ∼ Pt

over time t = 1, . . . ,∞.

Pt is the concept at time t.
We observe xt at time t.

Requirements for a model ht in the data stream setting
Prediction ŷt = ht(xt) required at real time t (immediately).
Computational time (training + labelling) spent per instance
must be less that the rate of arrival of new instances (i.e., the
real clock time between time steps t − 1 and t).
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Streaming Classification

Common assumptions found in the literature
1 Speed and size of stream is fast enough to require

instance-incremental learning
2 The true label yt−1 is available at time t, providing new

training example (xt−1, yt−1)

3 No temporal dependence
4 Concept drift will occur (Pt ̸= Pt+1 for some t).

Where do we get yt−1 from?
A human (then 1. and 2. are probably contradictory)
The present (i.e., the future wrt yt−1) meaning it is a time
series (contradicts 3.)

Assumptions 3. and 4. are contradictory



6

Streaming Classification

Common assumptions found in the literature
1 Speed and size of stream is fast enough to require

instance-incremental learning
2 The true label yt−1 is available at time t, providing new

training example (xt−1, yt−1)

3 No temporal dependence
4 Concept drift will occur (Pt ̸= Pt+1 for some t).

Where do we get yt−1 from?
A human (then 1. and 2. are probably contradictory)
The present (i.e., the future wrt yt−1) meaning it is a time
series (contradicts 3.)

Assumptions 3. and 4. are contradictory



7

Data Streams as Time Series
Benchmark datasets often look like time series:

yt = 0

yt = 1

Even when points sampled iid wrt current concept, a time series
forms in the coefficients, and/or in error signal:
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Time series tasks:
Filtering
Forecasting
State labelling/change point detection
Event/anomaly detection
. . .

(no supervised streaming classification!)

The data stream imposes constraints on the time series (prediction
required now, finite resources for infinite data points, concept
drift).
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Dealing with Drift, Learning Efficiently

We detect drift, to make iid stream. But
Perhaps not a single point (continuous drift, gradual drift . . . )
May be an anomaly.
. . . a change in state – this this drift?
When drift is confirmed – may be too late.

Use a sliding window to make an iid stream. But
What size?
The right size can be too big.

Recurrent neural network
Difficult to train in a streaming setting (especially cold start)

The model adapts automatically
Particular model selection, parametrization (buffer size,
learning rate, . . . ) and maintenance
May forget useful concepts for the future
Instance-incremental is not always necessary, or possible (need
labels). Batch-incremental models may perform well.
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Fast and Slow Learning

Batch and stream learning need not be mutually exclusive
A framework for Fast and Slow learning.

Built into Scikit MultiFlow framework
https://scikit-multiflow.github.io/

Montiel et al. 2018a

https://scikit-multiflow.github.io/
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Data Streams as Time Series Problems
Often better to model trajectory/behaviour of θ̂t ,

(xt , yt) ∼ Pθt

yt = h(xt) + ϵt

rather than detect drift retrospectively via ϵt
Treat problem as time series forecasting (always have labels!)
Error space is informative. In a multi-dimensional time series
we require multi-output models.
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Multi-label Learning
We want a model h to make predictions ŷ = h(x). For example,

x =

Given a set of L labels

{beach, people, foliage, sunset, urban}

our prediction is a subset:

ŷ = [1, 0, 1, 0, 0] ⇔ {beach, foliage}

i.e., multiple labels per instance, ŷ ∈ {0, 1}L.
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Single-label Problem Y ∈ {0, 1}
X1 X2 X3 X4 X5 Y
1 0.1 3 A NO 0
0 0.9 1 C YES 1
0 0.0 1 A NO 0
1 0.8 2 B YES 1
1 0.0 2 B YES 0
0 0.0 3 A YES ?

Multi-label Problem Y ⊆ {λ1, . . . , λL}
X1 X2 X3 X4 X5 Y
1 0.1 3 A NO {λ2, λ3}
0 0.9 1 C YES {λ1}
0 0.0 1 A NO {λ2}
1 0.8 2 B YES {λ1, λ4}
1 0.0 2 B YES {λ4}
0 0.0 3 A YES ?
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Single-label Problem Y ∈ {0, 1}
X1 X2 X3 X4 X5 Y
1 0.1 3 A NO 0
0 0.9 1 C YES 1
0 0.0 1 A NO 0
1 0.8 2 B YES 1
1 0.0 2 B YES 0
0 0.0 3 A YES ?

Multi-label Problem [Y1, . . . ,YL] ∈ {0, 1}L

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4
1 0.1 3 A NO 0 1 1 0
0 0.9 1 C YES 1 0 0 0
0 0.0 1 A NO 0 1 0 0
1 0.8 2 B YES 1 0 0 1
1 0.0 2 B YES 0 0 0 1
0 0.0 3 A YES ? ? ? ?



15

Applications
Titles of some multi-label papers

Machine learning for health informatics
[. . . ] Multi-label Sentiment Classification of Health Forums
Using Multi-Label Classification for Improved Question Answering
Predictive Skill Based Call Routing [. . . ]
An experimental design for identification of multiple load appliances
[. . . ] Methods for Prediagnosis of Cervical Cancer
Probabilistic Expert Systems for Reasoning in Clinical Depressive
Disorders
Spectral features for audio based vehicle and engine classification
Deep learning based multi-label classification for surgical tool presence
detection in laparoscopic videos
Ensemble-Based Location Tracking Using Passive RFID
Multi-task network embedding
Multi-Target Classification and Regression in Wineinformatics
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Individual Classifiers

y4y3y2y1

x

ŷj = hj(x) = argmax
yj∈{0,1}

P(yj |x) ▷ for index, j = 1, . . . , L

and then,

ŷ = h(x) = [ŷ1, . . . , ŷ4]

=
[
argmax
y1∈{0,1}

P(y1|x), · · · , argmax
y4∈{0,1}

P(y4|x)
]

=
[
h1(x), · · · , h4(x)

]
where hj can be any classifier h : X → {0, 1}



17

Why not Independent Classifiers?

If we model together, we can achieve
Better predictive performance (up to 20%)
Better computational performance (up to orders of
magnitude)
Discover interesting relationships among labels (i.e.,
interpretability)
Approach structured-output prediction tasks
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Classifier Chains

y4y3y2y1

x

Given a query instance x,

ŷ = argmax
y∈{0,1}L

P(y|x)

= argmax
y∈{0,1}L

P(y1|x)
L∏

j=2
P(yj |x, y1, . . . , yj−1)

i.e., inference becomes a search (for the best y∗).
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Greedy Search
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1 ŷ1 = h1(x) =
argmaxy1 P(y1|x) = 1

2 ŷ2 = h2(x, ŷ1) = . . . = 0
3 ŷ3 = h3(x, ŷ1, ŷ2) = . . . = 1

Again, any classifier can be used for hj
Fast, but susceptible to error proagation, since
argmax
y∈{0,1}L

P(y|x) ̸= [argmax
y1∈{0,1}

P(y1|x)︸ ︷︷ ︸
ŷ1

, . . . , argmax
y3∈{0,1}

P(y1|x, ŷ1, ŷ2)︸ ︷︷ ︸
ŷ3

]
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ŷ1

, . . . , argmax
y3∈{0,1}
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Monte-Carlo Search
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Generate samples {yt}T
t=1 ∼ P(y|x):

y (t)
1 ∼ P(y1|x)

y (t)
2 ∼ P(y2|x, y (t)

1 )

y (t)
3 ∼ P(y3|x, y (t)

1 , y (t)
2 )

yt = [y (t)
1 , y (t)

2 , y (t)
3 ].

return argmax
y∈{yt}T

t=1

P(y|x)

Need probabilistic interpretation P
Tractable, with similar accuracy to exhaustive search
Can use other search algorithms1, e.g., beam search,
ϵ-approxmiate, A∗ search, . . .

Read, Martino, and Luengo, Pat. Rec. 2014
1Survey: Mena et al., IJCAI 2015
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Results

Table: Average predictive performance (exact match, 5 fold CV).
Independent Classifiers (IC) vs Classifier Chains with Monte-Carlo search
(MCC). Base classifier logistic regression.

L IC MCC
Music 6 0.30 0.37
Scene 6 0.54 0.68
Yeast 14 0.14 0.23
Genbase 27 0.94 0.96
Medical 45 0.58 0.62
Enron 53 0.07 0.09
Reuters 101 0.29 0.37
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On the Order of Labels in the Chain

If we permute the order of labels Yπ1 , . . . ,YπL as presented to the
model (some permutation π) – will predictive performance differ?

y4y3y2y1

x

vs
y3y1y2y4

x

π = [1, 2, 3, 4] vs π = [4, 2, 1, 3]

Not in theory if given true P and optimal inference
In practice – yes.

Which order is best?
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Existing hierarchy may not be useful:
Only models positive dependence (if human-defined)
Unlikely to be optimal for your classifiers,
May not even be better than a random structure.

Based on label dependence? It depends; consider:

or and xor

x

xorandor

x

orandxor

x

Metric IC CC1 CC†2
Hamming score 0.83 1.00 1.00
Exact match 0.50 1.00 1.00

Logistic reg. †Depends on base classifier/inference

Hill-climbing in the label-order space. Combinatorial
complexity, but

Many local maxima.
Can be made more efficient with annealed proposal function
(freeze the chain from left to right)
Having more than one order is useful: consider π(1, . . . , L|x)
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Classifier Chains: Why it Works
As a probabilistic graphical model:

y3y2y1

x

vs as a neural network (zj nodes are delay nodes; carry forward
value):

x

y1z1

y2z2 z3

y3

it’s deep in the label space!
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Advantages vs standard neural network?

x

y1z1

y2z2 z3

y3

y3y2y1

z4z3z2z1

z4z3z2z1

x5x4x3x2x1

Just apply ‘off-the-shelf’ [deep] neural net?
Dependence is modelled via the hidden layer(s)
Well-established, popular, competitive

Classifier chains:
The ‘hidden’ nodes come ‘for free’ (faster training, not as
much data required for a good model)
A form of transfer learning.
Can share techniques from multi-label learning/neural nets.
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Deep in the Label Space
If using labels as inputs helps in predicting other labels. . . More
labels are better? Where can we get more labels from?

Use ‘meta labels’ (build labels from the label space)
Use the same labels multiple times
(remark: incorrect predictions can still be good
representations!)

y1

y2

z

x

y1 y2

y′
1 y′

2

z

x
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Results

Table: Exact Match, base classifier = logistic regression, except BRRF
(random forest)

Dataset BR BRRF CC . . . CCSL . . . DNN
Logical 0.52 9 1.00 2 0.64 8 . . . 1.00 2 . . . 0.83 6
Music 0.23 8 0.25 5 0.25 4 . . . 0.26 1 . . . 0.25 3
Scene 0.47 8 0.48 7 0.55 5 . . . 0.58 1 . . . 0.56 2
Yeast 0.14 6 0.10 9 0.18 3 . . . 0.18 5 . . . 0.12 7
Medical 0.45 7 0.68 4 0.46 6 . . . 0.68 2 . . . 0.62 5
Enron 0.11 7 0.12 6 0.12 5 . . . 0.13 2 . . . 0.09 8
Reuters 0.45 7 0.47 4 0.47 3 . . . 0.47 2 . . . 0.38 8
Ohsumed 0.15 4 0.17 2 0.15 3 . . . 0.15 6 . . . 0.21 1
MediaMill 0.09 8 0.12 2 0.12 3 . . . 0.11 6 . . . 0.05 9
Bibtex 0.10 5 0.10 7 0.11 4 . . . 0.16 3 . . . 0.07 8
Corel5k 0.01 7 0.01 5 0.01 4 . . . 0.02 1 . . . 0.01 7
avg rank 6.95 4.82 4.36 . . . 2.91 . . . 5.82

CCSL (‘Cascaded Synthetic Labels’) performs well vs
independent-classifier baseline, random-forest baseline, CC, and
‘deep neural network’ (DNN – MLP with two hidden layers).
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Results
Cascaded Overlapped Blocks2 (COB) vs MLP vs ADIOS3

Dataset Model Macro F1 Micro F1
Delicious MLP 15.12 38.81

ADIOSRND 15.47 38.93
ADIOSMBC 17.69 39.31
COB 15.91

MediaMill MLP 9.71 59.06
ADIOSRND 14.72 56.22
ADIOSMBC 16.01 60.01
COB 18.50 58.74

BioASQ MLP 14.86 42.40
ADIOSRND 15.91 43.11
ADIOSMBC 16.14 43.49
COB 16.95 44.53

NUS-WIDE MLP 14.00 42.09
ADIOSRND 11.41 41.87
ADIOSMBC 14.14 41.85
COB 14.61 47.21

2Manuscript in preparation; based on Read and Hollmén, ArXiv 2017, Read and Hollmén 2014
3Cisse, Al-Shedivat, and Bengio, ICML 2016
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Multi-Output Regression

What happens when the output space y ∈ RL, e.g.,

X1 X2 X3 X4 X5 Y1 Y2 Y3
1 0.1 3 A NO 37.00 25 0.88
0 0.9 1 C YES -22.88 22 0.22
0 0.0 1 A NO 19.21 12 0.25
1 0.8 2 B YES 88.23 11 0.77
1 0.0 2 B YES ? ? ?

Individual regressors – directly applicable.
Chains with greedy inference – directly applicable.
Chains with probabilistic inference – not tractable.
Sampling? We need a model of p(yj |x, y1, . . . , yj−1).
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Regression Chains

The chain model is directly applicable, i.e.,

ŷj = fj(x, ŷ1, . . . , ŷj−1)

for a set of regressors [f1, . . . , fL].

y4y3y2y1

x5x4x3x2x1

y4y3y2y1

x5x4x3x2x1

But (unlike in classifier chains):
Not necessarily a non-linearity in f , i.e., both models are
equivalent (collapses into a single linear transformation)!
What is our evaluation metric – MSE?
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Toy problem:

x (i) ∼ N (0, 0.1)

y (i)
1 ∼ N (µ(i), 0.1) and y (i)

2 ∼ N (µ(i), 0.1) where µ(i) ∼ {−1,+1}

1 2
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1.5

y 2
In minimizing MSE ( ŷj ≈ E[Yj |x]; shown in red) the path
cuts across the density (unknown to the learner).
If minimizing MAE: all paths shown are equal on average.

i.e., no need modelling labels together at all; except certain loss
metrics, or we want interpretation (for that: we need p(y|x)).
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Multi-Output Regressor Chains

As in classifier chains, we may factorize p(y|x) into
p(y1|x) · · · p(yL|x, y1, . . . , yL−1), but have to model these!
Tree search methods not applicable (there’s no tree)
Sampling? We need a model of each

y ′
j ∼ p(yj |x, y1, . . . , yj−1)

Approaches:
Discretize space
Density estimation
Bayesian regression
Monte Carlo methods
. . .
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Probabilistic Chains with Sequential Importance Sampling
Simplest formulation: draw samples and weight them. Under
observation x, where w (m)

0 = 1:

y (m)
j ∼ f (yj |y (m)

1 , . . . , y (m)
j−1 )

w (m)
j = w (m)

j−1 ·
p(y (m)

j |x, y (m)
1 , . . . , y (m)

j−1 )

f (y (m)
j |y (m)

1 , . . . , y (m)
j−1 )

given appropriate f and p.

We obtain M weighted trajectories

{y(m),w (m)}M
m=1

It’s (almost) a particle filter! We may also add:
Resampling step
Extra steps of MCMC or AIS schemes

Work with Luca Martino, manuscript in preparation



35

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
y1

4

3

2

1

0

1

y 2

{y(i)
1 , y(i)

2 }N
i = 1

f(y2|y1)

1.5 1.0 0.5 0.0 0.5 1.0 1.5
y1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y 2

{y(i)
1 , y(i)

2 }N
i = 1

f(y2|y1)

A Bayesian regression model suitable for drawing samples y′
j ∼ f (yj |y1, . . . , yj−1)

(variance shown as error bars). Shown for y2|y1 on two datasets.
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The trajectory for a particular x; (all {x(i) shown in black).

Accuracy is not better on average compared to greedy chains, but
predicted path can be a correct one; and we get a set of weighted
samples.
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Results

Dataset L IRB RCB RCK MCRCB
synth 5 0.18 0.18 0.24 0.18
andro 6 0.69 0.61 0.21 0.52
atp1d 6 0.27 0.28 0.38 0.27
atp7d 6 0.38 0.39 0.53 0.37
edm 2 0.64 0.64 0.49 0.62
enb 2 0.20 0.19 0.21 0.20
jura 3 0.47 0.47 0.52 0.46
oes10 16 0.20 0.20 0.36 0.24
oes97 16 0.25 0.25 0.37 0.27
sf1 3 0.49 0.49 0.46 0.47
sf2 3 0.35 0.35 0.34 0.34
slump 3 0.47 0.47 0.51 0.47

MSE; Independent Regression, Regressor Chains, and sequential MC regressior chains;
Bayesian or Kernel base regression.
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Do Regressor Chains Work?

Not as clearly as classifier chains (wrt independent models), but
yes if:

In ŷ2 = f2(f1(x), x), f1 provides an improved (non-linear)
representation. This can be seen as

A type of cascaded basis expansion
A particular form of deep learning

In the non-isotropic case (xj observed at step j): State space
models, xj can be used to update our estimate.
In terms of interpretation, e.g.,

Anomaly detection
Missing-value imputation
. . .

If other label concepts arrive later, i.e., transfer learning
(improvement in terms of computational time).
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Outline

1 Data Streams are Time Series

2 Multi-label Learning
Classifier Chains
Regressor Chains

3 Applications to Data Streams
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Route Forecasting
Create ‘personal nodes’ for a traveller
Model and predict routes using classifier chains
An advantage with relatively little training data and vs other
methods (e.g., HMM, RNN)

Personal nodes of a traveller and a predicted trajectory

Read, Martino, and Hollmén, Pat. Rec. 2017
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Missing-Value Imputation

Stream xt |t = 1, . . . but some values x (t)
j are missing.

Turn the stream into multi-output samples, train, and predict
(impute) missing values.
Related to tasks in recommender systems

A set/stream of data transformed into a multi-output prediction problem.

Montiel et al., PAKDD 2018, and manuscript in preparation
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Anomaly Detection and Interpretation
Create ‘random threads’ (classifier/regressor chain cascades)
through feature space and time (window)
Monitor error spaces for anomalies
Generate likely paths over the ‘gap’
(expand the number of samples if necessary)
Impute this (treat it as a missing value) prior to using as a
training example
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Continual Learning
In reinforcement learning,

RewardState

Actions

Reward signal is sparse
Self-train on own surrogate reward, then use it as a feature.
Recall: Bad/outdated predictions are not useless
representations
i.e., build up representation; transfer learning.

Work in progress . . .
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Summary

1 Data Streams are Time Series

2 Multi-label Learning
Classifier Chains
Regressor Chains

3 Applications to Data Streams
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Multi-Output Chain Models
and their Application in Data Streams

Jesse Read

http://www.lix.polytechnique.fr/~jread/
http://www.lix.polytechnique.fr/dascim/
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