Multi-Output Chain Models and their Application in Data Streams

Jesse Read

2 Multi-label Learning

- Classifier Chains
- Regressor Chains

3 Applications to Data Streams

Acknowledgements

Work with: Kostas Skiannis, Nikos Tziortziotis (*DaSciM team*, *École Polytechnique*), Jacob Montiel, Heitor Gomes, Albert Bifet, Rodrigo Mello (*Télécom ParisTech*), Luca Martino (*Univ. Rey Juan Carlos*), Jaakko Hollmèn (*Aalto University*), among others.

Outline

1 Data Streams are Time Series

Multi-label Learning Classifier Chains

- Classifier Chains
- Regressor Chains

Data Streams

In a data stream,

$$(x_t, y_t) \sim P_t$$

over time $t = 1, \ldots, \infty$.

- P_t is the concept at time t.
- We observe x_t at time t.

Requirements for a model h_t in the data stream setting

- Prediction $\hat{y}_t = h_t(x_t)$ required at real time t (immediately).
- Computational time (training + labelling) spent per instance must be less that the rate of arrival of new instances (i.e., the real clock time between time steps t - 1 and t).

Streaming Classification

Common assumptions found in the literature

- Speed and size of stream is fast enough to require instance-incremental learning
- The true label y_{t-1} is available at time t, providing new training example (x_{t-1}, y_{t-1})
- On temporal dependence
- Concept drift will occur ($P_t \neq P_{t+1}$ for some t).

Streaming Classification

Common assumptions found in the literature

- Speed and size of stream is fast enough to require instance-incremental learning
- The true label y_{t-1} is available at time t, providing new training example (x_{t-1}, y_{t-1})
- On temporal dependence
- Concept drift will occur ($P_t \neq P_{t+1}$ for some t).
 - Where do we get y_{t-1} from?
 - A human (then 1. and 2. are probably contradictory)
 - The present (i.e., the future wrt y_{t-1}) meaning it is a time series (contradicts 3.)
 - Assumptions 3. and 4. are contradictory

Data Streams as Time Series

Benchmark datasets often look like time series:

Data Streams as Time Series

Benchmark datasets often look like time series:

Even when points sampled iid wrt current concept, a time series forms in the coefficients, and/or in error signal:

Time series tasks:

- Filtering
- Forecasting
- State labelling/change point detection
- Event/anomaly detection
- . . .

(no supervised streaming classification!)

The data stream imposes constraints on the time series (prediction required *now*, finite resources for infinite data points, concept drift).

Dealing with Drift, Learning Efficiently

- We detect drift, to make iid stream. But
 - Perhaps not a single point (continuous drift, gradual drift ...)
 - May be an anomaly.
 - ... a change in state this this drift?
 - When drift is confirmed may be too late.
- Use a sliding window to make an iid stream. But
 - What size?
 - The right size can be too big.
- Recurrent neural network
 - Difficult to train in a streaming setting (especially cold start)
- The model adapts automatically
 - Particular model selection, parametrization (buffer size, learning rate, ...) and maintenance
 - May forget useful concepts for the future
 - Instance-incremental is not always necessary, or possible (need labels). Batch-incremental models may perform well.

Fast and Slow Learning

- Batch and stream learning need not be mutually exclusive
- A framework for Fast and Slow learning.

Built into **Scikit MultiFlow** framework https://scikit-multiflow.github.io/

Data Streams as Time Series Problems

• Often better to model trajectory/behaviour of $\hat{\theta}_t$,

$$egin{aligned} (x_t, y_t) &\sim P_{ heta_t} \ y_t &= h(x_t) + \epsilon_t \end{aligned}$$

rather than detect drift retrospectively via ϵ_t

- Treat problem as time series forecasting (always have labels!)
- Error space is informative. In a multi-dimensional time series we require **multi-output models**.

The error of 3 one-step-ahead forecasting models (left: Synth, right: Elec), as a 3D space

Outline

1 Data Streams are Time Series

2 Multi-label Learning

- Classifier Chains
- Regressor Chains

Multi-label Learning

We want a model h to make predictions $\hat{\mathbf{y}} = h(\mathbf{x})$. For example,

Given a set of L labels

{beach, people, foliage, sunset, urban}

our prediction is a subset:

$$\widehat{\mathbf{y}} = [1, 0, 1, 0, 0] \Leftrightarrow \{\text{beach}, \text{foliage}\}$$

i.e., multiple labels per instance, $\mathbf{\widehat{y}} \in \{0, 1\}^{L}$.

S	ingle-lal	oel Pro	blem \	$\ell \in \{0,1\}$	L}
X_1	X_2	X_3	X_4	X_5	Y
1	0.1	3	А	NO	0
0	0.9	1	С	YES	1
0	0.0	1	А	NO	0
1	0.8	2	В	YES	1
1	0.0	2	В	YES	0
0	0.0	3	А	YES	?

Multi-label Problem $Y \subseteq \{\lambda_1, \dots, \lambda_L\}$							
X_1	X_2	X_3	X_4	X_5	Y		
1	0.1	3	А	NO	$\{\lambda_2,\lambda_3\}$		
0	0.9	1	С	YES	$\{\lambda_1\}$		
0	0.0	1	Α	NO	$\{\lambda_2\}$		
1	0.8	2	В	YES	$\{\lambda_1, \lambda_4\}$		
1	0.0	2	В	YES	$\{\lambda_4\}$		
0	0.0	3	А	YES	?		

5	Single-label Problem $Y \in \{0,1\}$						
X_1	X_2	X_3	X_4	X_5	Y		
1	0.1	3	А	NO	0		
0	0.9	1	С	YES	1		
0	0.0	1	А	NO	0		
1	0.8	2	В	YES	1		
1	0.0	2	В	YES	0		
0	0.0	3	А	YES	?		

Multi-label Problem $[Y_1, \ldots, Y_L] \in \{0, 1\}^L$

				L = /		-1 (
X_1	X_2	X_3	X_4	X_5	Y_1	Y_2	Y_3	Y_4
1	0.1	3	А	NO	0	1	1	0
0	0.9	1	С	YES	1	0	0	0
0	0.0	1	А	NO	0	1	0	0
1	0.8	2	В	YES	1	0	0	1
1	0.0	2	В	YES	0	0	0	1
0	0.0	3	А	YES	?	?	?	?

Applications

Titles of some multi-label papers

- Machine learning for health informatics
- [...] Multi-label Sentiment Classification of Health Forums
- Using Multi-Label Classification for Improved Question Answering
- Predictive Skill Based Call Routing [...]
- An experimental design for identification of multiple load appliances
- [...] Methods for Prediagnosis of Cervical Cancer
- Probabilistic Expert Systems for Reasoning in Clinical Depressive Disorders
- Spectral features for audio based vehicle and engine classification
- Deep learning based multi-label classification for surgical tool presence detection in laparoscopic videos
- Ensemble-Based Location Tracking Using Passive RFID
- Multi-task network embedding
- Multi-Target Classification and Regression in Wineinformatics

Individual Classifiers

 $\widehat{y}_j = h_j(\mathbf{x}) = \underset{y_j \in \{0,1\}}{\operatorname{argmax}} P(y_j | \mathbf{x}) \quad \triangleright \text{ for index, } j = 1, \dots, L$

and then,

$$\begin{aligned} \widehat{\mathbf{y}} &= \mathbf{h}(\mathbf{x}) = [\widehat{y}_1, \dots, \widehat{y}_4] \\ &= \begin{bmatrix} \operatorname*{argmax}_{y_1 \in \{0,1\}} P(y_1 | \mathbf{x}), \cdots, \operatorname*{argmax}_{y_4 \in \{0,1\}} P(y_4 | \mathbf{x}) \end{bmatrix} \\ &= \begin{bmatrix} h_1(\mathbf{x}), \cdots, h_4(\mathbf{x}) \end{bmatrix} \end{aligned}$$

where h_j can be any classifier $h : \mathcal{X} \to \{0, 1\}$

Why not Independent Classifiers?

If we model together, we can achieve

- Better predictive performance (up to 20%)
- Better computational performance (up to orders of magnitude)
- Discover interesting relationships among labels (i.e., interpretability)
- Approach structured-output prediction tasks

Outline

1 Data Streams are Time Series

Classifier Chains

Given a query instance **x**,

$$\widehat{\mathbf{y}} = \underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} P(\mathbf{y}|\mathbf{x})$$
$$= \underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} P(y_{1}|\mathbf{x}) \prod_{j=2}^{L} P(y_{j}|\mathbf{x}, y_{1}, \dots, y_{j-1})$$

i.e., inference becomes a search (for the best \mathbf{y}^*).

 $\widehat{\boldsymbol{y}} = \boldsymbol{h}(\boldsymbol{x}) = [?,?,?]$

$$\widehat{\mathbf{y}} = \mathbf{h}(\mathbf{x}) = [\underline{\mathbf{1}},?,?]$$

$$\hat{y}_1 = h_1(\mathbf{x}) = \\ \operatorname{argmax}_{y_1} P(y_1 | \mathbf{x}) = 1$$

(

$$\hat{y}_1 = h_1(\mathbf{x}) = \\ \operatorname{argmax}_{y_1} P(y_1 | \mathbf{x}) = 1$$

2
$$\hat{y}_2 = h_2(\mathbf{x}, \hat{y}_1) = \ldots = 0$$

$$\widehat{\mathbf{y}} = \mathbf{h}(\mathbf{x}) = [1, \frac{\mathbf{0}}{2}, ?]$$

$$\widehat{\boldsymbol{y}} = \boldsymbol{h}(\boldsymbol{x}) = [1, 0, \boldsymbol{1}]$$

a
$$\hat{y}_1 = h_1(\mathbf{x}) = argmax_{y_1} P(y_1|\mathbf{x}) = 1$$
a $\hat{y}_2 = h_2(\mathbf{x}, \hat{y}_1) = \ldots = 0$
a $\hat{y}_3 = h_3(\mathbf{x}, \hat{y}_1, \hat{y}_2) = \ldots = 1$

a
$$\hat{y}_1 = h_1(\mathbf{x}) = argmax_{y_1} P(y_1|\mathbf{x}) = 1$$
a $\hat{y}_2 = h_2(\mathbf{x}, \hat{y}_1) = \ldots = 0$
a $\hat{y}_3 = h_3(\mathbf{x}, \hat{y}_1, \hat{y}_2) = \ldots = 1$

 $\widehat{\boldsymbol{y}} = \boldsymbol{h}(\boldsymbol{x}) = [1,0,1]$

- Again, any classifier can be used for h_j
- Fast, but susceptible to error proagation, since

$$\underset{\mathbf{y} \in \{0,1\}^{L}}{\operatorname{argmax}} P(\mathbf{y}|\mathbf{x}) \neq [\underbrace{\underset{y_1 \in \{0,1\}}{\operatorname{argmax}} P(y_1|\mathbf{x}), \dots, \underset{y_3 \in \{0,1\}}{\operatorname{argmax}} \operatorname{argmax}_{y_3 \in \{0,1\}} P(y_1|\mathbf{x}, \widehat{y}_1, \widehat{y}_2)]}_{\widehat{y}_3}$$

Monte-Carlo Search

Generate samples $\{\mathbf{y}_t\}_{t=1}^T \sim P(\mathbf{y}|\mathbf{x})$: $y_1^{(t)} \sim P(y_1|\mathbf{x})$ $y_2^{(t)} \sim P(y_2|\mathbf{x}, y_1^{(t)})$ $y_3^{(t)} \sim P(y_3|\mathbf{x}, y_1^{(t)}, y_2^{(t)})$ $\mathbf{y}_t = [y_1^{(t)}, y_2^{(t)}, y_3^{(t)}].$ return argmax $P(\mathbf{y}|\mathbf{x})$

 $\mathbf{y} \in \{\mathbf{y}_t\}_{t=1}^T$

Read, Martino, and Luengo, Pat. Rec. 2014 ¹Survey: Mena et al., IJCAI 2015

Monte-Carlo Search

Generate samples $\{\mathbf{y}_t\}_{t=1}^{T} \sim P(\mathbf{y}|\mathbf{x})$: $y_1^{(t)} \sim P(y_1|\mathbf{x})$ $y_2^{(t)} \sim P(y_2|\mathbf{x}, y_1^{(t)})$

$$y_3^{(t)} \sim P(y_3|\mathbf{x}, y_1^{(t)}, y_2^{(t)})$$

$$\mathbf{y}_t = [y_1^{(t)}, y_2^{(t)}, y_3^{(t)}].$$

return $\underset{\mathbf{y} \in \{\mathbf{y}_t\}_{t=1}^T}{\operatorname{argmax} P(\mathbf{y}|\mathbf{x})}$

- Need probabilistic interpretation P
- Tractable, with similar accuracy to exhaustive search
- Can use other search algorithms¹, e.g., beam search, ε-approxmiate, A* search, ...

Read, Martino, and Luengo, Pat. Rec. 2014 ¹Survey: Mena et al., IJCAI 2015

Results

Table: Average predictive performance (exact match, 5 fold CV). Independent Classifiers (IC) vs Classifier Chains with Monte-Carlo search (MCC). Base classifier logistic regression.

	L	IC	MCC
Music	6	0.30	0.37
Scene	6	0.54	0.68
Yeast	14	0.14	0.23
Genbase	27	0.94	0.96
Medical	45	0.58	0.62
Enron	53	0.07	0.09
Reuters	101	0.29	0.37

On the Order of Labels in the Chain

If we permute the order of labels $Y_{\pi_1}, \ldots, Y_{\pi_L}$ as presented to the model (some permutation π) – will predictive performance differ?

- Not in theory if given true P and optimal inference
- In practice yes.

Which order is best?

• Existing hierarchy may not be useful:

- Only models positive dependence (if human-defined)
- Unlikely to be optimal for your classifiers,
- May not even be better than a random structure.
- Based on label dependence? It depends; consider:

Logistic reg. [†]Depends on base classifier/inference

- Hill-climbing in the label-order space. Combinatorial complexity, but
 - Many local maxima.
 - Can be made more efficient with annealed proposal function (freeze the chain from left to right)
 - Having more than one order is useful: consider $\pi(1,\ldots,L|\mathbf{x})$

Classifier Chains: Why it Works As a probabilistic graphical model:

vs as a neural network (z_j nodes are delay nodes; carry forward value):

it's deep in the label space!

Advantages vs standard neural network?

- Just apply 'off-the-shelf' [deep] neural net?
 - Dependence is modelled via the hidden layer(s)
 - Well-established, popular, competitive
- Classifier chains:
 - The 'hidden' nodes come 'for free' (faster training, not as much data required for a good model)
 - A form of transfer learning.
 - Can share techniques from multi-label learning/neural nets.

Deep in the Label Space

If using labels as inputs helps in predicting other labels... More labels are better? Where can we get more labels from?

- Use 'meta labels' (build labels from the label space)
- Use the same labels multiple times (remark: incorrect predictions can still be good representations!)

Results

Table: Exact Match, base classifier = logistic regression, except BR_{RF} (random forest)

Dataset	BR	BR _{RF}	CC	 CCSL	 DNN
Logical	0.52 9	1.00 2	0.64 8	 1.00 2	 0.83 6
Music	0.23 8	0.25 5	0.25 4	 0.26 1	 0.25 3
Scene	0.47 8	0.48 7	0.55 5	 0.58 1	 0.56 2
Yeast	0.14 6	0.10 9	0.18 3	 0.18 5	 0.12 7
Medical	0.45 7	0.68 4	0.46 6	 0.68 2	 0.62 5
Enron	0.11 7	0.12 6	0.12 5	 0.13 2	 0.09 8
Reuters	0.45 7	0.47 4	0.47 3	 0.47 2	 0.38 8
Ohsumed	0.15 4	0.17 2	0.15 3	 0.15 6	 0.21 1
MediaMill	0.09 8	0.12 2	0.12 3	 0.11 6	 0.05 9
Bibtex	0.10 5	0.10 7	0.11 4	 0.16 3	 0.07 8
Corel5k	0.01 7	0.01 5	0.01 4	 0.02 1	 0.01 7
avg rank	6.95	4.82	4.36	 2.91	 5.82

CCSL ('Cascaded Synthetic Labels') performs well vs independent-classifier baseline, random-forest baseline, CC, and 'deep neural network' (DNN – MLP with two hidden layers).

Results

Cascaded Overlapped Blocks² (COB) vs MLP vs ADIOS³

Dataset	Model	Macro F_1	Micro F_1
Delicious	MLP	15.12	38.81
	ADIOS _{RND}	15.47	38.93
	ADIOS _{MBC}	17.69	39.31
	СОВ	15.91	
MediaMill	MLP	9.71	59.06
	ADIOS _{RND}	14.72	56.22
	ADIOS _{MBC}	16.01	60.01
	СОВ	18.50	58.74
BioASQ	MLP	14.86	42.40
	ADIOS _{RND}	15.91	43.11
	ADIOS _{MBC}	16.14	43.49
	СОВ	16.95	44.53
NUS-WIDE	MLP	14.00	42.09
	ADIOS _{RND}	11.41	41.87
	ADIOS _{MBC}	14.14	41.85
	СОВ	14.61	47.21

 $^2_{-}$ Manuscript in preparation; based on Read and Hollmén, ArXiv 2017, Read and Hollmén 2014

 $^3\mathrm{Cisse},\,\mathrm{Al}\text{-Shedivat},\,\mathrm{and}\,\,\mathrm{Bengio},\,\mathrm{ICML}\,\,2016$

Outline

1 Data Streams are Time Series

• Regressor Chains

Multi-Output Regression

What happens when the output space $\mathbf{y} \in \mathbb{R}^{L}$, e.g.,

X_1	X_2	X_3	X_4	X_5	Y_1	Y_2	Y_3
1	0.1	3	А	NO	37.00	25	0.88
0	0.9	1	С	YES	-22.88	22	0.22
0	0.0	1	Α	NO	19.21	12	0.25
1	0.8	2	В	YES	88.23	11	0.77
1	0.0	2	В	YES	?	?	?

- Individual regressors directly applicable.
- Chains with greedy inference **directly applicable**.
- Chains with probabilistic inference **not tractable**. Sampling? We need a model of $p(y_j | \mathbf{x}, y_1, \dots, y_{j-1})$.

Regression Chains

The chain model is directly applicable, i.e.,

$$\widehat{y}_j = f_j(\mathbf{x}, \widehat{y}_1, \dots, \widehat{y}_{j-1})$$

for a set of regressors $[f_1, \ldots, f_L]$.

But (unlike in classifier chains):

- Not necessarily a non-linearity in f, i.e., both models are equivalent (collapses into a single linear transformation)!
- What is our evaluation metric MSE?

Toy problem:

$$egin{aligned} &x^{(i)} \sim \mathcal{N}(0, 0.1) \ &y_1^{(i)} \sim \mathcal{N}(\mu^{(i)}, 0.1) & ext{ and } &y_2^{(i)} \sim \mathcal{N}(\mu^{(i)}, 0.1) & ext{ where } \mu^{(i)} \sim \{-1, +1\} \end{aligned}$$

- In minimizing MSE ($\hat{y}_j \approx \mathbb{E}[Y_j | \mathbf{x}]$; shown in red) the path cuts across the density (unknown to the learner).
- If minimizing MAE: all paths shown are equal on average.

i.e., no need modelling labels together at all; except certain loss metrics, or we want interpretation (for that: we need $p(\mathbf{y}|\mathbf{x})$).

Toy problem:

$$egin{aligned} & x^{(i)} \sim \mathcal{N}(0, 0.1) \ y_1^{(i)} \sim \mathcal{N}(\mu^{(i)}, 0.1) & ext{ and } & y_2^{(i)} \sim \mathcal{N}(\mu^{(i)}, 0.1) & ext{ where } \mu^{(i)} \sim \{-1, +1\} \end{aligned}$$

- In minimizing MSE ($\hat{y}_j \approx \mathbb{E}[Y_j | \mathbf{x}]$; shown in red) the path cuts across the density (unknown to the learner).
- If minimizing MAE: all paths shown are equal on average.

i.e., no need modelling labels together at all; except certain loss metrics, or we want interpretation (for that: we need $p(\mathbf{y}|\mathbf{x})$).

Multi-Output Regressor Chains

- As in classifier chains, we may factorize $p(\mathbf{y}|\mathbf{x})$ into $p(y_1|\mathbf{x}) \cdots p(y_L|\mathbf{x}, y_1, \dots, y_{L-1})$, but have to model these!
- Tree search methods not applicable (there's no tree)
- Sampling? We need a model of each

$$y_j' \sim p(y_j | \mathbf{x}, y_1, \dots, y_{j-1})$$

Approaches:

- Discretize space
- Density estimation
- Bayesian regression
- Monte Carlo methods

• . . .

Probabilistic Chains with Sequential Importance Sampling

Simplest formulation: draw samples and weight them. Under observation **x**, where $w_0^{(m)} = 1$:

$$y_j^{(m)} \sim f(y_j | y_1^{(m)}, \dots, y_{j-1}^{(m)})$$

$$w_j^{(m)} = w_{j-1}^{(m)} \cdot \frac{p(y_j^{(m)} | \mathbf{x}, y_1^{(m)}, \dots, y_{j-1}^{(m)})}{f(y_j^{(m)} | y_1^{(m)}, \dots, y_{j-1}^{(m)})}$$

given appropriate f and p.

• We obtain *M* weighted trajectories

$$\{\mathbf{y}^{(m)}, w^{(m)}\}_{m=1}^{M}$$

- It's (almost) a particle filter! We may also add:
 - Resampling step
 - Extra steps of MCMC or AIS schemes

Work with Luca Martino, manuscript in preparation

A Bayesian regression model suitable for drawing samples $y'_j \sim f(y_j|y_1, \ldots, y_{j-1})$ (variance shown as error bars). Shown for $y_2|y_1$ on two datasets.

The trajectory for a particular **x**; (all $\{\mathbf{x}^{(i)} \text{ shown in black}\}$).

Accuracy is not better on average compared to greedy chains, but predicted path *can be* a correct one; and we get a set of weighted samples.

Results

Dataset	L	IR _B	RC _B	RC_K	MCRC _B
synth	5	0.18	0.18	0.24	0.18
andro	6	0.69	0.61	0.21	0.52
atp1d	6	0.27	0.28	0.38	0.27
atp7d	6	0.38	0.39	0.53	0.37
edm	2	0.64	0.64	0.49	0.62
enb	2	0.20	0.19	0.21	0.20
jura	3	0.47	0.47	0.52	0.46
oes10	16	0.20	0.20	0.36	0.24
oes97	16	0.25	0.25	0.37	0.27
sf1	3	0.49	0.49	0.46	0.47
sf2	3	0.35	0.35	0.34	0.34
slump	3	0.47	0.47	0.51	0.47

MSE; Independent Regression, Regressor Chains, and sequential MC regressior chains; Bayesian or Kernel base regression.

Do Regressor Chains Work?

Not as clearly as classifier chains (wrt independent models), but yes if:

- In $\hat{y}_2 = f_2(f_1(x), x)$, f_1 provides an improved (non-linear) representation. This can be seen as
 - A type of cascaded basis expansion
 - A particular form of deep learning
- In the non-isotropic case (x_j observed at step j): State space models, x_j can be used to update our estimate.
- In terms of interpretation, e.g.,
 - Anomaly detection
 - Missing-value imputation
 - . . .
- If other label concepts arrive later, i.e., transfer learning (improvement in terms of computational time).

Outline

1 Data Streams are Time Series

Multi-label Learning
 Classifier Chains

• Regressor Chains

Route Forecasting

- Create 'personal nodes' for a traveller
- Model and predict routes using classifier chains
- An advantage with relatively little training data and vs other methods (e.g., HMM, RNN)

Personal nodes of a traveller and a predicted trajectory

Missing-Value Imputation

- Stream $\mathbf{x}_t | t = 1, ...$ but some values $x_i^{(t)}$ are missing.
- Turn the stream into multi-output samples, train, and predict (*impute*) missing values.
- Related to tasks in recommender systems

A set/stream of data transformed into a multi-output prediction problem.

Montiel et al., PAKDD 2018, and manuscript in preparation

Anomaly Detection and Interpretation

- Create 'random threads' (classifier/regressor chain cascades) through feature space and time (window)
- Monitor error spaces for anomalies
- Generate likely paths over the 'gap' (expand the number of samples if necessary)
- Impute this (treat it as a missing value) prior to using as a training example

Song et al., ICDM demo 2018, and manuscript in preparation

Continual Learning

In reinforcement learning,

- Reward signal is sparse
- Self-train on own surrogate reward, then use it as a feature.
- Recall: Bad/outdated predictions are not useless representations
- i.e., build up representation; transfer learning.

Summary

1 Data Streams are Time Series

2 Multi-label Learning

- Classifier Chains
- Regressor Chains

Multi-Output Chain Models and their Application in Data Streams

Jesse Read

http://www.lix.polytechnique.fr/~jread/ http://www.lix.polytechnique.fr/dascim/