Methods Deep in the Output Space

Jesse Read

Outline

Introduction

2 Multi-Output Methods

Open in the Output Space

Classification

We want a model h, which can take inputs in \mathcal{X} and provide a suitable output in \mathcal{Y} (under some suitable loss metric).

Binary classification

$$\mathcal{Y} = \{ \texttt{non_sunset}, \texttt{sunset} \}$$
 $\hat{y} = h(\mathbf{x}), \quad \mathsf{where} \ \hat{y} \in \mathcal{Y}$

e.g.,
$$\hat{y} =$$
sunset.

Classification

We want a model h, which can take inputs in \mathcal{X} and provide a suitable output in \mathcal{Y} (under some suitable loss metric).

Multi-class classification

$$\mathcal{Y} = \{ ext{sunset}, ext{people}, ext{foliage}, ext{beach}, ext{urban} \}$$
 $\hat{y} = h(ext{x}), \quad ext{where } \hat{y} \in \mathcal{Y}$

e.g.,
$$\hat{y} =$$
sunset.

Classification

We want a model h, which can take inputs in \mathcal{X} and provide a suitable output in \mathcal{Y} (under some suitable loss metric).

Multi-label classification

$$\mathcal{Y} = \{ \text{sunset}, \text{people}, \text{foliage}, \text{beach}, \text{urban} \}$$

 $\hat{y} = h(\mathbf{x}), \text{ where } \hat{y} \subseteq \mathcal{Y}$

e.g., $\hat{y} = \{\text{sunset}, \text{foliage}\} \Leftrightarrow \hat{\mathbf{y}} = [1, 0, 1, 0, 0] \text{ where } \hat{\mathbf{y}} \in \{0, 1\}^2.$ i.e., multiple labels per instance instead of a single label.

Single-label vs. Multi-label

Single-label Problem $Y \in \{0,1\}$

	0			- (-	, ,
X_1	X_2	<i>X</i> ₃	X_4	X_5	Y
1	0.1	3	Α	NO	0
0	0.9	1	C	YES	1
0	0.0	1	Α	NO	0
1	0.8	2	В	YES	1
1	0.0	2	В	YES	0
0	0.0	3	Α	YES	?

Multi-label Problem $Y \subseteq \{\lambda_1, \dots, \lambda_L\}$

				_ (
X_1	X_2	X_3	X_4	X_5	Y
1	0.1	3	Α	NO	$\{\lambda_2,\lambda_3\}$
0	0.9	1	C	YES	$\{\lambda_1\}$
0	0.0	1	Α	NO	$\{\lambda_2\}$
1	8.0	2	В	YES	$\{\lambda_1, \lambda_4\}$
1	0.0	2	В	YES	$\{\lambda_4\}$
0	0.0	3	Α	YES	?

Single-label vs. Multi-label

Single-label Problem $Y \in \{0, 1\}$

• • • • • • • • • • • • • • • • • • • •	6.0 .0.0			. – (•	, -,
X_1	X_2	X ₃	X_4	X_5	Y
1	0.1	3	Α	NO	0
0	0.9	1	C	YES	1
0	0.0	1	Α	NO	0
1	0.8	2	В	YES	1
1	0.0	2	В	YES	0
0	0.0	3	Α	YES	?

Multi-label Problem $[Y_1,\ldots,Y_L] \in \{0,1\}^L$

						-,	. ,	
X_1	X_2	X ₃	X_4	X_5	Y_1	Y_2	Y ₃	Y_4
1	0.1	3	Α	NO	0	1	1	0
0	0.9	1	C	YES	1	0	0	0
0	0.0	1	Α	NO	0	1	0	0
1	0.8	2	В	YES	1	0	0	1
1	0.0	2	В	YES	0	0	0	1
0	0.0	3	Α	YES	?	?	?	?

Text Categorization and Tag Recommendation

For example, the IMDb dataset: Textual movie plot summaries associated with genres (labels).

Also: Bookmarks, Bibtex, del.icio.us datasets. E-mail classification, document classification,

Labelling Images

Images are labelled to associated Scenes with e.g., \subseteq {beach, sunset, foliage, field, mountain, urban}

Labelling Audio

For example, labelling music with emotions, concepts, etc.

e.g., \subseteq { amazed-surprised, happy-pleased, relaxing-calm, quiet-still, sad-lonely, angry-aggressive }

Multi-output Learning

We can generalize to multi-class multi-label (multi-output classification):

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	type	gender	group
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	1	М	2
<i>x</i> ₁	x2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	4	F	2
x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	2	?	1
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	3	М	1
<i>x</i> ₁	<i>x</i> ₂	х3	<i>X</i> 4	<i>X</i> 5	?	?	?

Multi-output Learning

We can generalize to multi-class multi-label (multi-output classification):

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	type	gender	group
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	1	M	2
<i>x</i> ₁	x2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	4	F	2
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	2	?	1
<i>x</i> ₁	x ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	3	М	1
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	?	?	?

Or to continuous outputs (multi-output regression):

X_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	amount	age	percent
<i>x</i> ₁	x2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	37.00	25	88.0
x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>X</i> 5	-22.88	22	0.22
x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	19.21	12	0.25
<i>x</i> ₁	x ₂	<i>x</i> ₃	×4	<i>x</i> ₅	88.23	11	0.77
<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	?	?	?

Multi-output Learning

We can generalize to multi-class multi-label (multi-output classification):

	X_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	type	gender	group
ſ	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	1	M	2
	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	4	F	2
	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	2	?	1
l	x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	3	M	1
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> ₅	?	?	?

Or to continuous outputs (multi-output regression):

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	amount	age	percent
x ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>X</i> 5	37.00	25	88.0
x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	-22.88	22	0.22
x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	19.21	12	0.25
<i>x</i> ₁	x ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	88.23	11	0.77
<i>x</i> ₁	<i>x</i> ₂	х3	<i>X</i> 4	<i>X</i> 5	?	?	?

Or, a mixture of both nominal and continuous values.

What's the big deal?

Can't we just build a separate model for each label separately? (Why should I care about multi-label/multi-output learning?)

What's the big deal?

Can't we just build a separate model for each label separately? (Why should I care about multi-label/multi-output learning?)

- You can build independent models for each output, but with multi-label/multi-output methods, you can achieve
 - Better predictive performance (up to 20%)
 - Better computational performance (up to orders of magnitude)
 - Discover interesting relationships among labels
 - Find applications in structured-output prediction tasks (e.g., sequence prediction),

What's the big deal?

Can't we just build a separate model for each label separately? (Why should I care about multi-label/multi-output learning?)

- You can build independent models for each output, but with multi-label/multi-output methods, you can achieve
 - Better predictive performance (up to 20%)
 - Better computational performance (up to orders of magnitude)
 - Discover interesting relationships among labels
 - Find applications in structured-output prediction tasks (e.g., sequence prediction),
 - But we already have models for this (deep neural nets, CNNs, LSTMs, PGMs, ...) ...
 - You may be able to make them better!
 (and they can make multi-label learning better)

Structured Output Prediction

In structured output prediction: assume a particular structure amoung outputs, e.g., time, pixels, coordinates, hierarchy, graphs.

In the basic sense: structured output = multi-label with many labels but we may not be able to assume a particular dependence.

Outline

Introduction

Multi-Output Methods

3 Deep in the Output Space

Individual Classifiers

$$\hat{y}_j = h_j(\mathbf{x}) = \underset{y_j \in \{0,1\}}{\operatorname{argmax}} P(y_j | \mathbf{x}) \quad \triangleright \text{ for index } j = 1, \dots, L$$

and then,

$$\begin{aligned} \widehat{\mathbf{y}} &= \mathbf{h}(\mathbf{x}) = [\widehat{y}_1, \dots, \widehat{y}_4] \\ &= \left[\underset{y_1 \in \{0,1\}}{\operatorname{argmax}} P(y_1 | \mathbf{x}), \dots, \underset{y_4 \in \{0,1\}}{\operatorname{argmax}} P(y_4 | \mathbf{x}) \right] \\ &= \left[h_1(\mathbf{x}), \dots, h_4(\mathbf{x}) \right] \end{aligned}$$

Also known as the binary relevance method (BR) when $y_j \in \{0,1\}$.

Why not individual classifiers?

There may be label dependence, i.e.,

$$P(\mathbf{y}|\mathbf{x}) \neq \prod_{j=1}^{L} P(y_j|\mathbf{x})$$

- usually an appropriate assumption
- usually loss function is non-decomposable, e.g., 0/1 loss (exact match), Jaccard index, rank loss,

Table: Average predictive performance (5 fold CV, $\rm EXACT~MATCH$) from Read et al. 2015. Binary relevance vs Monte-carlo classifier chains.

	L	BR	MCC
Music	6	0.30	0.37
Scene	6	0.54	0.68
Yeast	14	0.14	0.23
Genbase	27	0.94	0.96
Medical	45	0.58	0.62
Enron	53	0.07	0.09
Reuters	101	0.29	0.37

Classifier Chains

Classifier Chains¹ for modelling label dependence,

$$p(\mathbf{y}|\mathbf{x}) = p(y_1|\mathbf{x}) \prod_{j=2}^{L} p(y_j|\mathbf{x}, y_1, \dots, y_{j-1})$$
$$\widehat{\mathbf{y}} = \underset{\mathbf{y} \in \{0,1\}^L}{\operatorname{argmax}} p(\mathbf{y}|\mathbf{x})$$

- Training: Build L binary base classifiers h_1, \ldots, h_L .
- Prediction: Each classifier provides $\hat{y}_j = h_j(\mathbf{x})$, which can then be used as an additional attribute: $h_{j+1}(\mathbf{x}, \hat{y}_1, \dots, \hat{y}_j)$

¹Read et al. 2009; Dembczyński, Cheng, and Hüllermeier 2010; Read et al. 2011; Read, Martino, and Luengo 2014.

Making Predictions

Instead of exploring all paths $\mathbf{y} \in \{0,1\}^L$, can use some tree search (beam search, Monte Carlo samples, \mathbf{A}^* search, ...), and then.

return
$$\underset{\mathbf{y} \in \{\mathbf{y}_t\}_{t=1}^T}{\operatorname{argmax}} P(\mathbf{y}|\mathbf{x})$$

where $T \ll 2^L$. Or, simply greedy (a single path: fast, but prone to error propagation).

Improvements:

- Hill climbing the chain order/structure space
- Large ensembles of random structures/label-subspaces
- Try different base learners
- ... Huge search spaces. But why does it work?

Improvements:

- Hill climbing the chain order/structure space
- Large ensembles of random structures/label-subspaces
- Try different base learners
- ... Huge search spaces. But why does it work?
 - Label dependence?
 - Not the full answer: difficult to map dependence to good models/interpretations if using very approximate inference such as greedy inference;
 - Appears to work even knowledge of label dependence is theoretically unnecessary (e.g., Hamming loss)

Outline

Introduction

2 Multi-Output Methods

3 Deep in the Output Space

Probabilistic graphical model:

vs Neural network (z_j s just carry forward input, i.e., delay nodes), i.e., using the greedy inference:

Connection to Deep Learning

Classifier chains (left) vs 'standard' neural network² (right):

Just apply 'off-the-shelf' [deep] neural net?

- Dependence is modelled in the latent layer(s)
- Well-established, popular (again), competitive

but requires more parametrization, training iterations.

• In classifier chains, the 'hidden' nodes come 'for free'

²e.g., MLP; but note: final layer is not a softmax!

Deep in the Label Space

Using other labels as input

- Allows more powerful (non-linear) decision boundaries \dots even with relatively simple classifiers (\approx activation functions)
- Works well with smaller training datasets, less parameterization/iterations.

So using labels as inputs, helps predicting other labels... Where can we get more labels from?

Meta Labels

We can get labels from other labels³, e.g., $\mathbf{y}_{S_k} \in S_k \subset \mathcal{Y}$; Or, prune to binary:

$$z_k = 1 \Leftrightarrow \mathbf{y}_{S_k} = \mathbf{s}^{(k)}$$

which decodes easily (via voting/weights) back to labels.

³Read, Puurula, and Bifet 2014; Read, Martino, and Hollmén 2017.

Synthetic Labels

We can make up our own labels⁴ or use the same labels again:

- ullet Synthetic labels pprox cascaded basis function expansion
- This can be combined with the meta labels
- Can embed these into deep neural networks
- Can include skip layer, hidden layers (latent variables), etc.

⁴Read and Hollmén 2014; Read and Hollmén 2017, and related work Spyromitros-Xioufis et al. 2016; Cisse, Al-Shedivat, and Bengio 2016

Results

Table: Exact Match, base classifier = logistic regression, except BR_{RF} (random forest)

Dataset	BR	BR _{RF}	CC	 CCSL	 DNN
Logical	0.52 9	1.00 2	0.64 8	 1.00 2	 0.83 6
Music	0.23 8	0.25 5	0.25 4	 0.26 1	 0.25 3
Scene	0.47 8	0.48 7	0.55 5	 0.58 1	 0.56 2
Yeast	0.14 6	0.10 9	0.18 3	 0.18 5	 0.12 7
Medical	0.45 7	0.68 4	0.46 6	 0.68 2	 0.62 5
Enron	0.11 7	0.12 6	0.12 5	 0.13 2	 0.09 8
Reuters	0.45 7	0.47 4	0.47 3	 0.47 2	 0.38 8
Ohsumed	0.15 4	0.17 2	0.15 3	 0.15 6	 0.21 1
M.Mill	0.09 8	0.12 2	0.12 3	 0.11 6	 0.05 9
Bibtex	0.10 5	0.10 7	0.11 4	 0.16 3	 0.07 8
Corel5k	0.01 7	0.01 5	0.01 4	 0.02 1	 0.01 7
avg rank	6.95	4.82	4.36	 2.91	 5.82

We (CCSL) outperform baselines, random-forest baseline, and 'deep neural network' (DNN; two hidden layers).

More Applications

LSHTC4: Large scale text classification

A Kaggle Challenge based on a large dataset created from Wikipedia. The dataset is multi-class, multi-label and hierarchical. The number of categories is roughly 325,000 and number of the documents is 2,400,000, described by about 1,600,000 features.

Winning solution^a was much faster and higher-performing than employing separate models (ignoring the hierarchy).

^aPuurula, Read, and Bifet 2014.

Demand Prediction

Outputs represent the demand at multiple points.

Inputs: time, day, etc., earlier demand.

Route/Destination Forecasting

Personal nodes of a traveller and predicted trajectory; Output: predicted trajectory (time steps \times waypoints)^a.

^aRead, Martino, and Hollmén 2017.

Missing-data imputation (multiple values)

Form multi-output datasets, train, and predict (input) missing values^a.

^aMontiel et al. 2018.

Reinforcement learning

An agent can carry out multiple actions, model state and reward across multiple timesteps, etc.

Summary

Multi-output methods which are deep in the output space.

- Predicting multiple outputs simultaneously
- Interconnections with other areas (probabilistic graphical models, neural networks, structured-output prediction, transfer learning, ...)
- Can perform well, and perform robustly with minimal fiddling/expertise/prior knowledge
- Many applications

Methods Deep in the Output Space

Jesse Read

