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Classification
We want a model h, which can take inputs in X and provide a
suitable output in Y (under some suitable loss metric).

x =

Binary classification

Y = {non_sunset, sunset}
ŷ = h(x), where ŷ ∈ Y

e.g., ŷ = sunset.
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Classification
We want a model h, which can take inputs in X and provide a
suitable output in Y (under some suitable loss metric).

x =

Multi-label classification

Y = {sunset, people, foliage, beach, urban}
ŷ = h(x), where ŷ ⊆ Y

e.g., ŷ = {sunset, foliage} ⇔ ŷ = [1, 0, 1, 0, 0] where ŷ ∈ {0, 1}2.
i.e., multiple labels per instance instead of a single label.
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Single-label vs. Multi-label

Single-label Problem Y ∈ {0, 1}
X1 X2 X3 X4 X5 Y
1 0.1 3 A NO 0
0 0.9 1 C YES 1
0 0.0 1 A NO 0
1 0.8 2 B YES 1
1 0.0 2 B YES 0
0 0.0 3 A YES ?

Multi-label Problem Y ⊆ {λ1, . . . , λL}
X1 X2 X3 X4 X5 Y
1 0.1 3 A NO {λ2, λ3}
0 0.9 1 C YES {λ1}
0 0.0 1 A NO {λ2}
1 0.8 2 B YES {λ1, λ4}
1 0.0 2 B YES {λ4}
0 0.0 3 A YES ?
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Single-label vs. Multi-label

Single-label Problem Y ∈ {0, 1}
X1 X2 X3 X4 X5 Y
1 0.1 3 A NO 0
0 0.9 1 C YES 1
0 0.0 1 A NO 0
1 0.8 2 B YES 1
1 0.0 2 B YES 0
0 0.0 3 A YES ?

Multi-label Problem [Y1, . . . ,YL] ∈ {0, 1}L

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4
1 0.1 3 A NO 0 1 1 0
0 0.9 1 C YES 1 0 0 0
0 0.0 1 A NO 0 1 0 0
1 0.8 2 B YES 1 0 0 1
1 0.0 2 B YES 0 0 0 1
0 0.0 3 A YES ? ? ? ?
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Text Categorization and Tag Recommendation

For example, the IMDb dataset: Textual movie plot summaries
associated with genres (labels).

Also: Bookmarks, Bibtex, del.icio.us datasets. E-mail
classification, document classification, . . . .
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Labelling Images

Images are labelled to associated Scenes with e.g.,
⊆ {beach, sunset, foliage, field, mountain, urban}
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Labelling Audio

For example, labelling music with emotions, concepts, etc.

e.g., ⊆ { amazed-surprised, happy-pleased, relaxing-calm,
quiet-still, sad-lonely, angry-aggressive }
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Multi-output Learning

We can generalize to multi-class multi-label (multi-output
classification):

X1 X2 X3 X4 X5 ty
pe

ge
nd

er

gr
ou

p

x1 x2 x3 x4 x5 1 M 2
x1 x2 x3 x4 x5 4 F 2
x1 x2 x3 x4 x5 2 ? 1
x1 x2 x3 x4 x5 3 M 1
x1 x2 x3 x4 x5 ? ? ?

Or to continuous outputs (multi-output regression):

X1 X2 X3 X4 X5 am
ou

nt

ag
e

pe
rc

en
t

x1 x2 x3 x4 x5 37.00 25 0.88
x1 x2 x3 x4 x5 -22.88 22 0.22
x1 x2 x3 x4 x5 19.21 12 0.25
x1 x2 x3 x4 x5 88.23 11 0.77
x1 x2 x3 x4 x5 ? ? ?

Or, a mixture of both nominal and continuous values.
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What’s the big deal?
Can’t we just build a separate model for each label separately?
(Why should I care about multi-label/multi-output learning?)

– You can build independent models for each output, but with
multi-label/multi-output methods, you can achieve

Better predictive performance (up to 20%)
Better computational performance (up to orders of
magnitude)
Discover interesting relationships among labels
Find applications in structured-output prediction tasks (e.g.,
sequence prediction),

But we already have models for this (deep neural nets,
CNNs, LSTMs, PGMs, . . . ) . . .
– You may be able to make them better!
(and they can make multi-label learning better)
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Structured Output Prediction
In structured output prediction: assume a particular structure
amoung outputs, e.g., time, pixels, coordinates, hierarchy, graphs.
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In the basic sense: structured output = multi-label with many
labels but we may not be able to assume a particular dependence.
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Individual Classifiers

y4y3y2y1

x

ŷj = hj(x) = argmax
yj∈{0,1}

P(yj |x) ▷ for index j = 1, . . . , L

and then,

ŷ = h(x) = [ŷ1, . . . , ŷ4]

=
[
argmax
y1∈{0,1}

P(y1|x), · · · , argmax
y4∈{0,1}

P(y4|x)
]

=
[
h1(x), · · · , h4(x)

]
Also known as the binary relevance method (BR) when yj ∈ {0, 1}.
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Why not individual classifiers?
There may be label dependence, i.e.,

P(y|x) ̸=
L∏

j=1
P(yj |x)

usually an appropriate assumption
usually loss function is non-decomposable, e.g., 0/1 loss
(exact match), Jaccard index, rank loss, . . . .

Table: Average predictive performance (5 fold CV, Exact Match) from
Read et al. 2015. Binary relevance vs Monte-carlo classifier chains.

L BR MCC
Music 6 0.30 0.37
Scene 6 0.54 0.68
Yeast 14 0.14 0.23
Genbase 27 0.94 0.96
Medical 45 0.58 0.62
Enron 53 0.07 0.09
Reuters 101 0.29 0.37
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Classifier Chains
Classifier Chains1 for modelling label dependence,

y4y3y2y1

x

p(y|x) = p(y1|x)
L∏

j=2
p(yj |x, y1, . . . , yj−1)

ŷ = argmax
y∈{0,1}L

p(y|x)

Training: Build L binary base classifiers h1, . . . , hL.
Prediction: Each classifier provides ŷj = hj(x), which can then
be used as an additional attribute: hj+1(x, ŷ1, . . . , ŷj)

1Read et al. 2009; Dembczyński, Cheng, and Hüllermeier 2010; Read et al.
2011; Read, Martino, and Luengo 2014.
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Making Predictions
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y3y2y1

x

Instead of exploring all paths
y ∈ {0, 1}L, can use some tree search
(beam search, Monte Carlo samples, A∗

search, . . . ), and then.

return argmax
y∈{yt}T

t=1

P(y|x)

where T ≪ 2L.
Or, simply greedy (a single path: fast,
but prone to error propagation).
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y4y3y2y1

xx

Improvements:
Hill climbing the chain order/structure space
Large ensembles of random structures/label-subspaces
Try different base learners

. . . Huge search spaces. But why does it work?

Label dependence?
Not the full answer: difficult to map dependence to good
models/interpretations if using very approximate inference
such as greedy inference;
Appears to work even knowledge of label dependence is
theoretically unnecessary (e.g., Hamming loss)
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y4y3y2y1

xx
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Improvements:
Hill climbing the chain order/structure space
Large ensembles of random structures/label-subspaces
Try different base learners

. . . Huge search spaces. But why does it work?
Label dependence?

Not the full answer: difficult to map dependence to good
models/interpretations if using very approximate inference
such as greedy inference;
Appears to work even knowledge of label dependence is
theoretically unnecessary (e.g., Hamming loss)
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Probabilistic graphical model:

y3y2y1

x

vs Neural network (zjs just carry forward input, i.e., delay nodes),
i.e., using the greedy inference:

x

y1z1

y2z2 z3

y3
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Connection to Deep Learning
Classifier chains (left) vs ‘standard’ neural network2 (right):

x

y1z1

y2z2 z3

y3

y3y2y1

z4z3z2z1

z4z3z2z1

x5x4x3x2x1

Just apply ‘off-the-shelf’ [deep] neural net?
Dependence is modelled in the latent layer(s)
Well-established, popular (again), competitive

but requires more parametrization, training iterations.
In classifier chains, the ‘hidden’ nodes come ‘for free’

2e.g., MLP; but note: final layer is not a softmax!
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Deep in the Label Space

Using other labels as input
Allows more powerful (non-linear) decision boundaries
. . . even with relatively simple classifiers (≈ activation
functions)
Works well with smaller training datasets, less
parameterization/iterations.

So using labels as inputs, helps predicting other labels. . . Where
can we get more labels from?
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Meta Labels

We can get labels from other labels3, e.g., ySk ∈ Sk ⊂ Y; Or,
prune to binary:

zk = 1 ⇔ ySk = s(k)

which decodes easily (via voting/weights) back to labels.

y3y2y1

y{1,2} y{2,3}

x5x4x3x2x1

3Read, Puurula, and Bifet 2014; Read, Martino, and Hollmén 2017.
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Synthetic Labels
We can make up our own labels4 or use the same labels again:

y2y1

y2y1z2z1

x5x4x3x2x1

Synthetic labels ≈ cascaded basis function expansion
This can be combined with the meta labels
Can embed these into deep neural networks
Can include skip layer, hidden layers (latent variables), etc.

4Read and Hollmén 2014; Read and Hollmén 2017, and related work
Spyromitros-Xioufis et al. 2016; Cisse, Al-Shedivat, and Bengio 2016
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Results

Table: Exact Match, base classifier = logistic regression, except BRRF
(random forest)

Dataset BR BRRF CC . . . CCSL . . . DNN
Logical 0.52 9 1.00 2 0.64 8 . . . 1.00 2 . . . 0.83 6
Music 0.23 8 0.25 5 0.25 4 . . . 0.26 1 . . . 0.25 3
Scene 0.47 8 0.48 7 0.55 5 . . . 0.58 1 . . . 0.56 2
Yeast 0.14 6 0.10 9 0.18 3 . . . 0.18 5 . . . 0.12 7
Medical 0.45 7 0.68 4 0.46 6 . . . 0.68 2 . . . 0.62 5
Enron 0.11 7 0.12 6 0.12 5 . . . 0.13 2 . . . 0.09 8
Reuters 0.45 7 0.47 4 0.47 3 . . . 0.47 2 . . . 0.38 8
Ohsumed 0.15 4 0.17 2 0.15 3 . . . 0.15 6 . . . 0.21 1
M.Mill 0.09 8 0.12 2 0.12 3 . . . 0.11 6 . . . 0.05 9
Bibtex 0.10 5 0.10 7 0.11 4 . . . 0.16 3 . . . 0.07 8
Corel5k 0.01 7 0.01 5 0.01 4 . . . 0.02 1 . . . 0.01 7
avg rank 6.95 4.82 4.36 . . . 2.91 . . . 5.82

We (CCSL) outperform baselines, random-forest baseline, and
‘deep neural network’ (DNN; two hidden layers).
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More Applications

LSHTC4: Large scale text classification

A Kaggle Challenge based on a large dataset created from Wikipedia.
The dataset is multi-class, multi-label and hierarchical. The number
of categories is roughly 325,000 and number of the documents is
2,400,000, described by about 1,600,000 features.

Winning solutiona was much faster and higher-performing than
employing separate models (ignoring the hierarchy).

aPuurula, Read, and Bifet 2014.
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Demand Prediction
Outputs represent the demand at multiple points.

Inputs: time, day, etc., earlier demand.
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Route/Destination Forecasting
Personal nodes of a traveller and predicted trajectory;
Output: predicted trajectory (time steps × waypoints)a.

aRead, Martino, and Hollmén 2017.
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Missing-data imputation (multiple values)
Form multi-output datasets, train, and predict (input) missing
valuesa.

aMontiel et al. 2018.
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Reinforcement learning
An agent can carry out multiple actions, model state and reward
across multiple timesteps, etc.

RewardState

Actions
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Summary

Multi-output methods which are deep in the output space.
Predicting multiple outputs simultaneously
Interconnections with other areas (probabilistic graphical
models, neural networks, structured-output prediction,
transfer learning, . . . )
Can perform well, and perform robustly with minimal
fiddling/expertise/prior knowledge
Many applications
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