
A Pruned Problem Transformation Method for Multi-label
Classification

Jesse Read
University of Waikato, Hamilton, New Zealand

jmr30@cs.waikato.ac.nz

ABSTRACT
Multi-label classification has gained significant interest in re-
cent years, paralleled by the increasing use of manual multi-
labelling, often known as applying“tags”to documents. Well
known examples include Flickr1, YouTube2, CiteULike3 and
Google Bookmarks4. This paper focuses on Problem Trans-
formation (PT) as an approach to multi-label classification
and details these methods as well as their respective advan-
tages and disadvantages. A Pruned Problem Transforma-
tion method (PPT) is presented, along with several exten-
sions, designed to overcome such disadvantages. This new
method is empirically compared with existing methods, both
in terms of accuracy and training time, and the results are
encouraging.

Categories and Subject Descriptors
H.2.6 [Computing Methodologies]: Artificial Intelligence-
Learning[machine learning]; H.3 [Information Search and

Retrieval]: Information Storage and Retrieval

Keywords
multi-label classification, problem transformation

1. INTRODUCTION
Single-label classification, often known as multi-class clas-
sification, is the common machine learning task where a
document is assigned a single label l, that is chosen from
a previously known finite set of labels L. A dataset D of
n documents is composed of document-classification pairs
(d0, l0), (d1, li), · · · , (dn, ln).

Multi-label classification is an extension of this problem,
where documents are classified with a subset of labels S ⊆ L.
A multi–label dataset D of n documents is composed of
document-classification pairs (d0, S0), (d1, Si), · · · , (dn, Sn).

1http://flickr.com
2http://www.youtube.com
3http://www.citeulike.org
4http://www.google.com/bookmarks

Although in the past there has been relatively little research
involving the multi-label problem, it is in fact quite natu-
ral to document classification. For example a news article
about US troops in Iraq. Given a labelling scheme based
on relevant countries, such a document could intuitively be
labelled both “US” and “Iraq”.

A standard measure of “multi-labeled-ness” is label cardi-
nality – LCard(D), which is simply the average number of
labels assigned per document. It is defined formally as:

LCard(D) =

P|D|
i=1
|Si|

|D|

The relative number of distinct label subsets assigned through-
out a dataset can be quantified by PDist(D); the Probability
that a label combination is D istinct within the dataset. This
gives some measure of the regularity of the relationships be-
tween labels in the dataset. This measure can be defined
formally as:

PDist(D) =
|{S|∃(d, S) ∈ D}|

|D|

A multi-label classifier MC will produce a label subset Yi ⊆
L as a classification, i.e. Yi = MC(di). Yi can be com-
pared to the true classification Si in order to evaluate the
performance of the classifier C.

The most common way to carry out multi-label classification
is by Problem Transformation (PT) to turn multi-labeled
training data into a single-label representation, then to use
this representation to train one or more single-label classi-
fiers. The single-label output is then transformed back into
a multi-label representation via the reverse process. There
are many state of the art tried and proven single-label clas-
sifiers to choose from which can all be employed under a
PT method for multi-label categorisation, some of the most
successful PT approaches have worked with Support Vec-
tor Machines (SVMs) [4, 3], Naive Bayes [9, 8, 13] and k
Nearest Neighbor [15, 7]. SVMs are tempting, especially
for text data, due to the high accuracy that they typically
demonstrate.

A second way to carry out multi-label classification is to
modify an existing single-label algorithm for direct multi-
labelling. Such modifications have been done to several
single-label algorithms, with most of the literature partic-
ularly concentrated on C4.5 [1, 11], and AdaBoost [2, 10,

5, 6]. In reality, most such modifications simply employ a
PT method internally and can easily be generalised to any
single-label classifier.

There are three fundamental PT methods on which virtually
all methods mentioned in the literature are based. For the
purpose of simplicity, they can be referred to as PT1, PT2
and PT3.

The most widely documented approach, PT1, learns |L| bi-
nary classifiers B0, · · · , B|L|. Each classifier Bj is responsi-
ble for predicting the 0/1 association for each label lj ∈ L.
A 1 indicates that the jth is relevant to a document, and
0 that it is not. Each classifier Bj is trained in a “one-vs-
rest” fashion, using documents which are labeled lj ∈ Si as
positive examples, against those that are not (li /∈ Si), as
negative examples.

Another commonly employed method, PT2, hinges on the
use of posterior probabilities which are output by many
single-label classifiers like Naive Bayes. For any document,
the single-label classifier can give the probability that it
should be assigned each label. I.e. (lj , λj) for each label
lj ∈ L, where λj is the probability that l in relevant to
the document in question. Ordering these label-probability
pairs by λj from highest to lowest will produce a ranking
of label relevance. The most relevant labels will form the
classification subset Yi ⊆ L. They are selected from the
top of the ranking with some threshold t; taking each la-
bel lj where λj > t. The threshold is usually selected ad
hoc. In regards to the training process, each multi-label
document (di, Si) is turned into |S| single-label documents
(di, si0), (di, si1), · · · , (di, si|S|).

Both PT1 and PT2 suffer from the label independence as-
sumption, and hence fail to take advantage of any relation-
ships between labels. This means that they both may com-
pose classification subsets whose elements would never co-
occur in practice. It is also a common occurrence that the
subsets created as a classification contain are not a sensi-
ble size; containing either far too many or too few labels.
Performance suffers accordingly. In the case of PT1, these
problems are even further exacerbated by the class imbal-
ance problem. There is an overwhelming number of negative
examples in each of the individual binary classifiers.

The PT3 method creates its single-label problem simply by
treating each document’s label subset Si as a single label li.
The set of all distinct such labels is used as the set of possible
labels L for a single-label classifier to chose from. For exam-
ple, a document (d, S) where S = {a, c, d} is transformed
into the single-label representation (d, l) where l = acd.
The reverse transformation is obvious. The total number
of classes the single-label classifier must learn is the total
number of distinct label sets found in the training set.

Although PT3 is able to take into account relationships
between labels and inherently creates more sensible clas-
sification subsets than the other two methods, it suffers
when LCard(D) and PDist(D) are high. In this situation
there are many rarely occurring combinations throughout
the dataset, which forces PT3 to create a huge label set for
the single-label classifier to chose from. In practice many
label combinations are unique to the training set – often

only found in a single document – yet each one will require
the creation of separate class for the single-label classifier.
The huge selection of such combinations often confuses and
unbalances the single-label classifier, leading to significant
performance loss. Also, most crucially, PT3 will never be
able to assign the correct label combination to a document
if that particular combination which was never seen in the
training set.

Each PT method varies in terms of CPU and memory re-
quirements. For a dataset D of constant size, PT1 scales ac-
cording to |L|. A separate classifier is trained for each lj ∈ L.
PT2 scales in terms of LCard(D), as there will be |Si| du-
plications of the feature set for each multi-labeled training
document (di, Si) in D. Unlike PT1 however, PT2 only re-
quires a single classifier. PT3’s time complexity is dictated
by PDist(D) which indicates the number of classes which
are to be generated from the dataset D. This complexity
often explodes in problems where the number of such combi-
nations is particularly high. This is especially the case when
using SVMs, which are inherently binary, and standard im-
plementations rely on a quadratic pair-wise approach to any
single-label problems where |L| > 2. In theory, as many
classes can be generated as there exist documents in the
training set, and even in practice, this number is always
greater than |L|. Hence PT3 will generally run by far the
slowest of all with SVMs.

2. RELATED WORKS
G. Tsoumakas and I. Vlahavas have recently created RAKEL
(RAndom K-labEL subsets) [12], a problem transformation
method based on PT3. Their method creates m random
sets of k label combinations. A single-label classifier (the
authors concentrate on SVMs) is built from each of these
sets. An ensemble voting process under a threshold t is
then employed to arrive at a decision for the final classifica-
tion set. They show that accuracy can be higher than the
standard PT methods. The greatest disadvantage of this ap-
proach, acknowledged by the authors, is the time complex-
ity of O(2k). This makes running the algorithm with many
datasets prohibitive. A further disadvantage is the combi-
nation of parameters; only certain combinations of m×k× t
will produce results higher than standard PT3.

3. A PRUNED PROBLEM TRANSFORMA-
TION METHOD

PPT is a simple, but effective and efficient Pruned Problem
T ransformation method, inspired by the advantages of both
the PT3 and PT2 methods, and several aspects found com-
mon to most multi-label datasets, particularly text datasets.
Consider the graphs in Figure 3, where nodes represent
the labels of the Medical dataset (refer to Section 4 for
more about this dataset), and the edges represent label co-
occurrences. When all edges representing a co-occurrences
that appear less than three times in the dataset have been
removed, this leaves a relatively simple graph which still rep-
resents 92% of all documents. PPT concerns itself with this
simpler view of a multi-labeled dataset.

The principal concept begins like PT3: Each label subset
Si of each document (di, Si), becomes a single label, and
the set of distinct labels becomes the classes for the single-
label classifier. PPT differs whenever it deals with a subset

Each edge represents at least 1 co-occurrence (100% of
examples):

4

29

32

34

16 2042 25 27

44

2326 21

36

41

43

37 38

11

13

24

39

8

31

40

10 9

12

22

1928

0

35

15

7

17

14 6 5

33

3

30 18 12

Each edge represents at least 3 co-occurrences (92% of
examples):

36

41

24

39

32

34 44

11

4

25 2728

43

9

0 17 14 10

31

16 37 23 30 35 19 1 12 38 2 21 22

Figure 1: Label co-occurrences in the Medical dataset

Si which occurs in the training data x times or less, where
x is supplied as a parameter greater than 0. In this case
the subset does not become a class value. The most simple
option, is to drop all such instances entirely from the training
set prior to training. This allows for the creation of a very
fast and surprisingly accurate PT method, as the single-
label classifier employed by it does not get bogged down by
rarely used classes, i.e. it reduces over fitting via a form of
Pruning.

However, clearly a lot of information is potentially lost in
this process. To save information from a document (di, Si),
a technique inspired by the training procedure of PT2 can be
employed: Splitting the combination subset Si, into n sub-
subsets Si0, Si1, · · · , Sin where these sub-subsets do occur
more than x times in the training data. There are a number
of ways to chose which subsets to use. In this case we take
first take the largest possible subset Si1, then the largest
subset Si2 which does not contain any elements of Si1, until
we are left with an empty set. In other words; subsets where
Si1 ∩ Si2 ∩ · · · ∩ Sin = ∅. In each case the feature informa-
tion di is duplicated, and each new instance is assigned one
of the sub-subsets, i.e. (di1, Si1), (di1, Si2), · · · , (di1, Sin),
which are all added to the training set (the original (di, Si)
is discarded). The pseudo-code of Figure 3 illustrates this
process. The process is optional, and in the implementation
of PPT it is enabled with a flag “−n” (for no information
loss), henceforth referred to as PPT−n here. When this op-
tion is not specified (PPT standard), these documents will
simply be discarded.

Both PPT and PPT−n, like PT3, take advantage of rela-
tionships between labels in the training data, but are much
less prone to over-fitting, and at the same time much more
efficient.

However, these methods run into considerable disadvantages
when working with more complex than average labelling
schemes. When PDist(D) is atypically high, this often sig-
nifies that there is little regularity within the labelling, and
that there are likely to be many combinations in the test set
which may not exist in the training set and thus cannot be
accounted for by either classifier.

Whilst authors of RAKEL introduce random subsets to ap-
proach this problem, there is also a straightforward method
inspired by the classification procedure of PT2 which will

1 X ← distinct subsets that occur > x times in Dtrain

Prune(Dtrain, (d, S))

1 while S 6= ∅
2 do

3 T ← argmax
|T |

f(T) ∈ {T |T ⊂ S, T ∈ X}

4 if T 6= ∅
5 then d′ ← COPY(d)
6 PUSH (Dtrain, (d′, T))
7 S ← S \ T
8 else

9 then break
10 REMOVE (Dtrain, (d, T))

Figure 2: PPT−n’s pruning routine, done for each

(d, S) where S occurs less than x times in D

not have any effect on build time. PT2 combines top rank-
ing single labels to form a multi-labeled classification, and
in a similar way, the PPT implementation can combine top
ranking multi-label combinations to produce a single multi-
labeled classification, and this extension can be applied in-
dependent of the training process, as an option that will be
referred to here as −c. Note that either standard PPT or
PPT −n can take on this process. Like PT2, a threshold
is necessary to select the top combinations. Figure 3 shows
confidence outputs of an example document being combined
into a final prediction.

Sk each label lj ∈ L λk

0 0 0 1 0 0 1 0 0 0.9
1 0 0 1 0 0 0 0 1 0.8
2 1 0 0 0 0 1 0 1 0.4
3 0 1 0 0 0 0 0 0 0.0
4 1 1 0 0 0 0 0 0 0.0
p 0.4 0.0 1.7 0.0 0.0 1.3 0.0 1.2 t = 0.5
Y 0 0 1 0 0 1 0 1

Figure 3: An example of how PPT−c would use the

confidences of several multi-label predictions to form

one final multi-label prediction. Each possible multi-

label combination Sk is predicted with a confidence

of λk. ljk indicates the presence of the jth label in

the kth distinct subset. Yj = 1 if pj > t, else 0; where

pj =
P|L|

k=0
ljk × λk; t = 0.5; |L| = 8; |distinct S| = 5.

The final classification is the set Y = {l2, l5, l7}

4. EXPERIMENTAL EVALUATION
In this section the performance of the PPT variations are
compared against the standard PT methods, and then RAKEL,
with various multi-label datasets.

4.1 Evaluation Measures
As in single-label evaluation, accuracy can be determined
by an “evaluation by example” approach – correct examples
over the total examples (|D|) – where in the multi-label case,
all labels must be correct for the example to be correct. For
multi-labeled output, there is also the option of “evaluation

|D| |L| LCard(D) PDist(D)
20Newsgroups 19300 20 1.03 0.003

Medical 978 45 1.25 0.096
Articles 3617 101 1.13 0.058

Yeast 2417 14 4.24 0.082
Scene 2407 6 1.07 0.006

OSHUMED 13929 23 1.66 0.082
Enron 1702 53 3.38 0.442

Table 1: A Collection of Multi-label Datasets

by label”, where each label is evaluated separately and com-
pared to the total number of labels (|L| ∗ |D|), also known
as hamming loss. However these two simple measures are
rarely used as standalone results for multi-labeled classifica-
tion, as the former tends to be overly harsh and the latter
overly lenient. For the following experiments, accuracy is
determined as follows:

Accuracy(C,D) =
1

|D|

|D|
X

i=1

|Si ∩ Yi|

|Si ∪ Yi|

In other words, accuracy can be obtained for one document
by taking the intersection of its true label subset and pre-
dicted label subset over the union of these same subsets.
The accuracy for the entire test set is then the average of all
these accuracies. Other commonly used methods for multi-
label evaluation in the literature include precision and recall
and the F1-measure, and hamming loss [12].

4.2 Datasets
Table 1 displays a collection of multi-label datasets, with
some important statistics about them. Refer to Section 1
for details of the notation.

Medical5 includes documents with a brief free-text summary
of patient symptom history and their prognosis which are
used to predict insurance codes. 20Newsgroups6 is the well
known 20 Newsgroups dataset. The Enron7 dataset is a sub-
set of the Enron email Corpus8, labeled with a set of cate-
gories developed by the UC Berkeley Enron Email Analysis
Project. Articles9 is essentially a website mirror consisting
of news and other left-wing articles which are categorised by
country, language, and other common news categories such
as Sci/Tech, and Economy. The OHSUMED10 collection is
composed of medical abstracts categorised into 23 cardiovas-
cular diseases categories. The Yeast11 data relates to protein
classification, and finally, the Scene12 dataset relates to clas-
sification of still scenes.

4.3 Results
In Figures 4—10, the variations of PPT are compared with
the three standard PT methods PT1, PT2, and PT3. The
horizontal axis represents the pruning value x, with a range
of 1− 15. Higher values represent more pruning. There are

5http://ieee-ssci.org/cidm2007/challenge
6http://people.csail.mit.edu/jrennie/20Newsgroups/
7http://bailando.sims.berkeley.edu/enron email.html
8http://www.cs.cmu.edu/ enron/
9http://www.marxist.com

10http://dit.unitn.it/ moschitt/corpora.htm
11http://mlkd.csd.auth.gr/multilabel.html#Datasets
12http://mlkd.csd.auth.gr/multilabel.html#Datasets

two graphs for each dataset, one where vertical axis repre-
sents accuracy, and the other where the vertical axis repre-
sents build time (in seconds). In each case, SVMs are used
as the single-label classifiers. Note that 0.1 is used as the
threshold for PT2, as this value shows the best all round
accuracy.

The parameter notation −n signifies that information was
saved from the documents discarded during pruning. The
flag −c indicates that the post-classification voting proce-
dure based on prediction confidences was used to combine
multi-label predictions into one. Both these variations to
basic PPT are described in Section 3. The −c option re-
quires a threshold and 0.21 is the value used in each of the
experiments. The −c option is only used for experiments in-
volving datasets with a high LCard(D) or PDist(D) (refer
to table 1). On other datasets the option has no effect on
accuracy, and hence is superfluous.

All experiments were carried out on a 1.66GHz Intel(R) CPU
with 2 gigabytes of memory running MacOSX. In some cases
one or more of the standard PT methods were unable to
complete given the resources afforded by this machine or
displayed accuracies below the context of the problem and
for this reason are absent from two of the graphs.

Table 2 compares PPT with the state of the art RAKEL
algorithm described in Section 2, using various measures
of comparison: Accuracy, the F1-measure, hamming loss,
as well as build time, and McNemar’s test provides the p
statistic (from the computed chi-square with one degree of
freedom). RAKEL produces different results on each run
due to its random subsets, and the figures displayed in the
table are an average taken over 10 runs. To determine the
parameters to use, combinations of k ×m × t were run for

k = {3, 5, 7, · · · , |L|
2
}×m = {5, 10, 15, · · · , min(|Lk|, 150)}×

t = 0.5, which are similar to ranges used by its authors. Each
parameter combination was tried once, and the one giving
the best result for each dataset was used for 10 runs, the
averages of which are displayed in the table. A similar pro-
cedure was used to determine a suitable x for PPT, as well
as the possible −n and −c flags. Whereas the authors of
RAKEL show that t = 0.5 generally performs best for their
algorithm, PPT works best under approximately t = 0.21
and this is used as the default. The rest of the param-
eters are displayed in the table underneath the respective
dataset. Both algorithms have been implemented with the
WEKA [14] framework, and the default parameters for SVM
is used as the internal single-label classifier.

5. DISCUSSION
PPT invariably improves on all the standard methods for
all datasets for at least some parameter combination, usu-
ally between the range of x = 1 and x = 6. Obviously only
marginal performance gains can be made over the standard
methods when the dataset is barely multi-labeled, e.g. the
20Newsgroups set, Figure 4. However, while the accuracy
gains on these datasets are slight, time complexity is still sig-
nificantly reduced, particularly in respect to standard PT3.

Interestingly, in some cases it was not only faster to simply
discard instances, but also more accurate. The experiments
with the Scene, and in particular the Yeast datasets (Fig-
ures 8 and 9) show this phenomenon. The Enron set (10)

 54.5

 55

 55.5

 56

 56.5

 57

 57.5

 58

 58.5

 59

 59.5

 0 2 4 6 8 10 12 14 16

PT3
PT2
PPT

PPT -n

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 2 4 6 8 10 12 14 16

(Accuracy) (Build Time)

Figure 4: 20Newsgroups Dataset

 47

 48

 49

 50

 51

 52

 53

 54

 55

 0 2 4 6 8 10 12 14 16

PT3
PPT

PPT -n

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16

(Accuracy) (Build Time)

Figure 5: Articles Dataset

 33.5

 34

 34.5

 35

 35.5

 36

 36.5

 37

 37.5

 38

 38.5

 0 2 4 6 8 10 12 14 16

PT1
PT2
PPT

PPT -n

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2 4 6 8 10 12 14 16

(Accuracy) (Build Time)

Figure 6: OHSUMED Dataset

 66

 68

 70

 72

 74

 76

 78

 0 2 4 6 8 10 12 14 16

PT3
PT1
PT2
PPT

PPT -n

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2 4 6 8 10 12 14 16

(Accuracy) (Build Time)

Figure 7: Medical Dataset

 68

 68.5

 69

 69.5

 70

 70.5

 71

 71.5

 0 2 4 6 8 10 12 14 16

PT3
PT2
PPT

PPT -n

 8

 9

 10

 11

 12

 13

 14

 15

 0 2 4 6 8 10 12 14 16

(Accuracy) (Build Time)

Figure 8: Scene Dataset

 48

 49

 50

 51

 52

 53

 54

 0 2 4 6 8 10 12 14 16

PT3
PT1
PT2
PPT

PPT -n
PPT -c

PPT -n -c

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16

(Accuracy) (Build Time)

Figure 9: Yeast Dataset

 20

 22

 24

 26

 28

 30

 32

 34

 36

 0 2 4 6 8 10 12 14 16

PT3
PT1
PT2
PPT

PPT -n
PPT -c

PPT -n -c

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16

(Accuracy) (Build Time)

Figure 10: Enron Dataset

Medical Enron Scene
RAKEL PPT RAKEL PPT RAKEL PPT

F1 0.776 0.789 0.457 0.503 0.722 0.723
Ham. Loss 0.012 0.011 0.067 0.074 0.102 0.098
Accuracy 0.743 0.776 0.323 0.353 0.696 0.710

McNemar’s p = 0.295 p = 0.000 p = 0.077
Build Time 190.0 15.0 3162.8 190.0 51.4 4.8

RAKEL par. M = 20, K = 27 M = 80, K = 21 M = 15, K = 4
PPT par. −n, x = 1 −n,−c, x = 5 x = 4

Table 2: Comparison between RAKEL and PPT

provides the most unpredictable and interesting results, due
to its complex nature. Without joining the posteriori confi-
dences, PPT basic suffers against even two of the standard
PT methods; PT1 and PT3; yet with the post-classification
combination extension (−c), a very significant 5 percentage
points can be gained over the standard methods. More inter-
esting still, this lead drops when x < 3. This also compares
to the fact that PT2 (from which the −c extension was in-
spired) performs better than PT3 – a scenario unique to this
dataset.

In Table 2, we see that with the elected parameter combi-
nations, PPT outperforms RAKEL on nearly all measures,
and even where the p statistic of McNemar’s test does not
fall below the 0.05 significance level, the model is quicker to
build by at least a factor of 10. PPT continues to distance
itself from RAKEL when |L| is greater, as can be seen with
the Enron dataset, where it excels in both performance and
build time.

In nearly all cases the ideal x was found between 1 and 5
inclusive, and for some reason, a threshold of close to t =
0.21 proved ideal for all cases where the −c extension was
used, thus making ideal parameter configuration reasonably
straight forward.

6. CONCLUSIONS AND FUTURE WORK
This paper has introduced a new multi-label Problem Trans-
formation method, PPT, which, under the right parameters,
can invariably achieve better classification than the base PT
methods which were described, as well as other state of the
art methods. PPT focuses on capturing relationships be-

tween labels, while pruning and reducing over-fitting. It is
able to reduce much of the computation complexity associ-
ated with other methods, especially when employing SVMs,
while in many cases able to improve on them in terms of ac-
curacy. Its parameters are surprisingly easy to tune, and can
be adjusted for optimal accuracy or build time, and an ex-
tension to this method, based on posteriori confidences, was
also presented, which enables PPT to adapt to particularly
complex datasets where otherwise it might suffer.

In the future, related issues worth studying include using dif-
ferent single-labeled classifiers (this paper focuses primarily
on the use of SVMs), as well as feature selection, and how
this affects the performance of PPT. Particularly of interest
and considered for future work is the adaption of PPT to
operate in a hierarchical setting.

7. REFERENCES
[1] Dendrik Blockeel, Leander Schietgat, Jan Struyf,

Amanda Clare, and Saso Dzeroski. Hierarchical
multilabel classification trees for gene function
prediction (extended abstract). In Workshop on
Probabilistic Modeling and Machine Learning in
Structural and Systems Biology, Tuusula, Finland,
2006.

[2] Y. Freund and R. Schapire. A short introduction to
boosting. Japonese Society for Artificial Intelligence,
14(5):771–780, 1999.

[3] S. Godbole, S. Sarawagi, and S. Chakrabarti. Scaling
multi-class support vector machines using inter-class
confusion. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages

513–518, 2002.

[4] Shantanu Godbole and Sunita Sarawagi.
Discriminative methods for multi-labeled
classification. In 8th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 2004.

[5] Svetlana Kiritchenko. Hierarchical Text Categorization
and its Application to Bioinformatics. PhD thesis,
Queen’s University, Kingston, Canada, 2005.

[6] Svetlana Kiritchenko, Stan Matwin, Richard Nock,
and Fazel Famili. Learning and evaluation in the
presence of class hierarchies: Application to text
categorization. In Proc. of the 19th Canadian
Conference on Artificial Intelligence, pages 395–406,
2006.

[7] Xiao Luo and Nur A. Zincir-Heywood. Evaluation of
two systems on multi-class multi-label document
classification. In International Syposium on
Methodologies for Intelligent Systems, pages 161–169,
2005.

[8] Andrew K. Mccallum. Multi-label text classification
with a mixture model trained by EM. In Association
for the Advancement of Artificial Intelligence
workshop on text learning, 1999.

[9] Kamal Nigam, Andrew K. Mccallum, Sebastian
Thrun, and Tom M. Mitchell. Text classification from
labeled and unlabeled documents using em. Machine
Learning, 39(2/3):103–134, 2000.

[10] Robert E. Schapire and Yoram Singer. Boostexter: A
boosting-based system for text categorization.
Machine Learning, 39(2/3):135–168, 2000.

[11] J. Struyf, S. Dzeroski, H. Blockeel, and A. Clare.
Hierarchical multi-classification with predictive
clustering trees in functional genomics. In Workshop
on Computational Methods in Bioinformatics at the
12th Portuguese Conference on Artificial Intelligence,
2005.

[12] G. Tsoumakas and I. Vlahavas. Random k-labelsets:
An ensemble method for multilabel classification. In
Proceedings of the 18th European Conference on
Machine Learning (ECML 2007), 2007.

[13] David Vilar and Maŕıa José. Multi-label text
classification using multinomial models. In España for
Natural Language Processing (EsTAL), 2004.

[14] Ian H. Witten and Eibe Frank. Data Mining: Practical
machine learning tools and techniques. Morgan
Kaufmann, San Francisco, second edition, 2005.

[15] Min-Ling Zhang and Zhi-Hua Zhou. A k-nearest
neighbor based algorithm for multi-label classification.
volume 2, pages 718–721 Vol. 2. The IEEE
Computational Intelligence Society, 2005.

