
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 98 (2014) 121–134
0165-16
http://d

n Corr
E-m
journal homepage: www.elsevier.com/locate/sigpro
A distributed particle filter for nonlinear tracking in wireless
sensor networks

Jesse Read n, Katrin Achutegui, Joaquín Míguez
Avenida de la Universidad 30, 28911 Leganés (Madrid), Spain
a r t i c l e i n f o

Article history:
Received 15 May 2013
Received in revised form
28 October 2013
Accepted 16 November 2013
Available online 23 November 2013

Keywords:
Wireless sensor network
Particle filters
Distributed filtering
Target tracking
84/$ - see front matter & 2013 Elsevier B.V.
x.doi.org/10.1016/j.sigpro.2013.11.020

esponding author.
ail address: jesse@tsc.uc3m.es (J. Read).
a b s t r a c t

The use of distributed particle filters for tracking in sensor networks has become popular
in recent years. The distributed particle filters proposed in the literature up to now are
only approximations of the centralized particle filter or, if they are a proper distributed
version of the particle filter, their implementation in a wireless sensor network demands a
prohibitive communication capability. In this work, we propose a mathematically sound
distributed particle filter for tracking in a real-world indoor wireless sensor network
composed of low-power nodes. We provide formal and general descriptions of our
methodology and then present the results of both real-world experiments and/or computer
simulations that use models fitted with real data. With the same number of particles as a
centralized filter, the distributed algorithm is over four times faster, yet our simulations show
that, even assuming the same processing speed, the accuracy of the centralized and
distributed algorithms is practically identical. The main limitation of the proposed scheme
is the need to make all the sensor observations available to every processing node. Therefore,
it is better suited to broadcast networks or multihop networks where the volume of
generated data is kept low, e.g., by an adequate local pre-processing of the observations.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Due to the falling size and costs of suitable hardware, the
deployment of wireless sensor networks (WSNs) is becom-
ing an increasingly attractive option for a growing number of
tracking applications. Examples include security and surveil-
lance [5], environmental monitoring (tracking of weather
patterns and pollutants) [32], monitoring in domestic situa-
tions (such as in care for the elderly) [22], and biology
(tracking of populations or individual animals) [27].

Distributed applications of tracking are particularly
interesting in situations where high powered centralized
hardware cannot be used. For example, in deployments
where computational infrastructure and power are not
available or where there is no time or trivial way of
connecting to it. In these scenarios, and possibly many
All rights reserved.
others, the signal processing tasks associated to target
tracking need to be shared by the multiple nodes of the
WSN. Note that many items in the literature often refer to
WSNs as being “distributed”, even when processing is
centralized, because they are merely referring to the
physically distributed nature of WSNs. See, for example
[9,18]. In this paper we refer to “distributed” specifically
with regard to processing, meaning that the computational
tasks are divided among a set of low-power devices in
the WSN.

1.1. Distributed particle filters

Stochastic filtering methods [3] are obvious candidates
for tracking applications and so they have been researched
by many authors in the context of WSNs [29,14,11]. Such
work includes, e.g., networks of interacting Kalman filters
[30], although in this case the emphasis is on the mini-
mization of the communications among nodes, rather than
the sharing of the computational load.

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2013.11.020
http://dx.doi.org/10.1016/j.sigpro.2013.11.020
http://dx.doi.org/10.1016/j.sigpro.2013.11.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2013.11.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2013.11.020&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2013.11.020&domain=pdf
mailto:jesse@tsc.uc3m.es
http://dx.doi.org/10.1016/j.sigpro.2013.11.020

J. Read et al. / Signal Processing 98 (2014) 121–134122
Particle filtering for target tracking in WSNs has already
attracted some attention (see, for example, [5,1,2]), including
a body of work in distributed methods [10,21,7]. Its relation
with agent networks has also been explored in [20]. In [7], a
fully decentralized particle filtering algorithm for cooperative
blind equalization is introduced. The technique is proper, in
the sense that it does not make any approximations in the
computation of the importance weights of the particles.
However, the scheme is applicable only when the state
signal is discrete, and would be infeasible in terms of
computation and communication among nodes (the authors
provide a simulation only) in WSNs such as we consider. In
[10], the communication load is reduced using quantization
and parametric approximations of densities. A similar para-
metric approach is applied in [21] to further simplify com-
munications. Even though these parametric approximations
are practical for their implementation on a WSN they
compromise the estimation accuracy and, to our view, take
away the main advantage of the particle filter (PF): its
generality and capability to perform numerical inference,
with full theoretical guarantees, on arbitrary state-space
dynamical systems.

Recently, a class of interacting PFs has been proposed
for multi-target tracking [13]. This class of algorithms
relies on splitting the state-space into lower dimensional
subspaces in order to become computationally tractable,
but does not guarantee that the particles are assigned
proper weights.

The majority of existing contributions related to parti-
cle filtering and WSNs, only offer a theoretical perspective
and/or computer simulation studies, owing in part to the
challenges of real-world deployment and testing on low-
powered hardware. Deployments of physical sensor net-
works have so far been almost exclusively centralized
implementations (from the computational point of view
held in this paper). For instance, in [2], 25 acoustic sensors
are used with a centralized PF to track a remote-controlled
car; the authors of [1] use the received signal strength
(RSS) measurements to track an additional moving target
node. There are a few exceptions of actually distributed
PFs, but they are approximations to the centralized PF
whose convergence cannot be guaranteed [26].

The use of the non-parametric loopy belief propagation
(NPBP) algorithm has also been suggested for localization and
tracking [33] in the same context as particle filtering. This
algorithm is an extension of the belief propagation algorithm
to continuous variables and it uses a graph to represent the
decomposition of the joint posterior. Its main advantage
resides in exploiting the rich underlying structure that often
arises in image processing or in sensor self-localization.
Unfortunately, the NPBP scheme poses difficulties for a real-
time implementation and there is, to the best of our knowl-
edge, no rigorous proof of convergence for this algorithm.

1.2. Distributed resampling with non-proportional
allocation (DRNA)

Particle filtering algorithms involve three basic steps:
generation of samples, computation of weights and resam-
pling [12]. While it is straightforward to parallelize
the first two steps, resampling requires the joint
processing of all the samples in the filter and so becomes
a computational bottleneck. The distributed resampling
with non-proportional allocation (DRNA) algorithm [6]
(see also [28] for some further analysis) addresses the
parallelization of the resampling step to remove this
bottleneck.

The DRNA algorithm was devised to speed up the
computations in particle filtering. The basic assumption
in [6] is the availability of a set of processors intercon-
nected by a high-speed network, in the manner of state-
of-the-art graphical processing unit (GPU) based systems
[25]. Such network is intended to guarantee that all
processors in the system have access to the full set of
observed data.

In a typical WSN, the communications among nodes
are subject to various constraints (i.e., transmission capa-
city, power consumption or error rates), hence the hard-
ware setup is fundamentally different from the one
assumed in [6] or [28]. The issue of whether the DRNA
scheme can be efficiently exploited in a typical WSN
deployment has not been addressed, to the best of our
knowledge, neither experimentally nor even by realistic
simulation studies.

1.3. Contribution and organization

In this work we tackle the problem of implementing
the DRNA algorithm in a practical WSN. We first revisit the
standard PF and its combination with the DRNA algorithm,
providing a formal description of the methodology. This
includes simple analysis showing that (a) the importance
weights are proper and (b) the resampling scheme is
unbiased. While intuitively expected, these two simple
results had not been given explicitly in [6,28].

In the second part of the paper, we address the
practical implementation of a distributed PF for target
tracking, based on the DRNA scheme, that runs in real time
over a WSN. We have developed a software and hardware
testbed implementing the required algorithmic and com-
munication modules in physical nodes, equipped with
light-intensity sensors but with limited processing and
communication capabilities. We assess the tracking per-
formance of the resulting system in terms of the tracking
error obtained with both synthetic and real data. Finally, we
study the constraints in the real-time operation and the
communication capabilities (compared to a centralized PF)
by way of experiments with our testbed implementation.

The main limitation of the proposed scheme is that every
node performing a subset of the computations of the PF
should have access to all the observations (i.e., all the
measurements collected by the WSN at the current time step)
in order to guarantee that the particle weights are proper and,
therefore, the resulting estimators consistent. The DRNA-
based PF, therefore, is better suited to broadcast networks or
multihopWSNs where the volume of data generated per time
step is limited. The algorithm can still be applied with
different sets of observations available at each node, but in
that case the particle weights are only proper locally (at each
node) and not globally (over the whole network).

The rest of the paper is organized as follows. In Section 2
we introduce the problem of target tracking in the context of

J. Read et al. / Signal Processing 98 (2014) 121–134 123
Bayesian filtering and describe the solution to the non-linear
filtering problem with a centralized PF. In Section 3 we
provide a formal description on the DRNA algorithm. Section
4 describes the software and hardware framework for the
testbed implementation of the distributed tracker. In Section
5 we provide details of the specific deployment for the
experiments. Both numerical and experimental results are
presented and discussed in Section 6 and, finally, Section 7 is
devoted to the conclusions.

2. Non-linear filtering in state-space systems

2.1. Bayesian filtering

Consider the Markov state-space random model with
conditionally independent observations [16, chapter 1],
[31] described by the triplet1

pðx0Þ; pðxt jxt�1Þ; pðyt jxtÞ; t ¼ 1;2;… ð1Þ
where xt is a dx � 1 vector containing the state variables at
time tZ0, yt is a dy � 1 vector of observations at time tZ1,
pðx0Þ is the prior probability density function (pdf) of the
state, the transition density pðxt jxt�1Þ describes the (ran-
dom) dynamics of the process xt and the conditional pdf
pðyt jxtÞ describes how the observations are related to the
state and it is usually referred to as the likelihood of xt . The
goal of a stochastic filtering algorithm is to approximate the
sequence of posterior pdfs pðxt jy1:tÞ, tZ1. In particular,
pðxt jy1:tÞ is often termed the filter density at time t.

Assume that the pdf pðxt�1jy1:t�1Þ is available. The
filter density at time t can be recursively computed in
two steps. We first compute the predictive pdf

pðxt jy1:t�1Þ ¼
Z

pðxt jxt�1Þpðxt�1jy1:t�1Þ dxt�1 ð2Þ

and, when the new observation yt is collected, we update
pðxt jy1:t�1Þ to obtain

pðxt jy1:tÞppðyt jxtÞpðxt jy1:t�1Þ ð3Þ
Eqs. (2) and (3) form the basis of the optimal Bayesian
solution to the filtering problem. Knowledge of the poster-
ior density pðxt jytÞ enables the computation of optimal
estimators of the state according to different criteria. For
example, the minimum mean-square error (MMSE) esti-
mator is the posterior mean of xt , i.e., xMMSE

t ¼ R
xt

pðxt jy1:tÞ dxt .
If the system of Eq. (1) is linear and Gaussian, then

pðxt jy1:tÞ is Gaussian and can be obtained exactly using the
Kalman filter algorithm [23]. If the state space is discrete
and finite, exact solutions can also be computed [31].
However if any of the pdf's in (1) is non-Gaussian, or the
system is nonlinear, we have to resort to suboptimal
algorithms in order to approximate the filter pdf pðxt jy1:tÞ.
1 We use letter p to represent both probability density functions
(pdfs) and probability mass functions (pmfs). This is an argument-wise
notation: if x and y are continuous random variables (r.v.), then p(x) is the
pdf of x and p(y) is the pdf of y, possibly different. If z is a discrete r.v., p(z)
is the pmf of z. Conditional pdfs and pmfs are indicated in the obvious
manner, e.g., pðxjyÞ is the conditional pdf of the r.v. x given the r.v. y. This
notation is common in Bayesian analysis and in the particle filtering
literature (see, e.g., [17,16,12]).
2.2. Particle filtering

PFs, also known as sequential Monte Carlo methods, are
simulation based algorithms that yield estimates of the
state based on a random point-mass (or “particle”) repre-
sentation of the probability measure with density pðxt jy1:tÞ
[16,3]. It is often convenient to derive PFs as instances of
the SIS methodology [17]. Consider the joint posterior
density pðx0:t jy1:tÞ. Bayes' theorem, together with the
Markov property of the state and the conditional inde-
pendence of the observations, yields the recursive rela-
tionship

pðx0:t jy1:tÞppðyt jxtÞpðxt jxt�1Þpðx0:t�1jy1:t�1Þ; tZ1; ð4Þ
where we have omitted the proportionality constant
1=pðyt jy1:t�1Þ, which is independent of x0:t .

Most PFs can be obtained as a combination of (4) with
the importance sampling (IS) principle [16, chapter 1]. In
particular, if we draw a collection of sample sequences
xðmÞ
0:t , m¼ 1;…;M, from a proposal density πtðx0:tÞ that

admits a factorization πtðx0:tÞ ¼ πtjt�1ðxt jx0:t�1Þπt�1ðx0:t�1Þ,
then the samples are assigned nonnormalized importance
weights of the form

wðmÞn
t ¼ pðyt jxðmÞ

t ÞpðxðmÞ
t jxðmÞ

t�1ÞpðxðmÞ
0:t�1jy1:t�1Þ

πtjt�1ðxðmÞ
t jxðmÞ

0:t�1Þπt�1ðxðmÞ
0:t�1Þ

p
pðyt jxðmÞ

t ÞpðxðmÞ
t jxðmÞ

t�1Þ
πtjt�1ðxðmÞ

t jxðmÞ
0:t�1Þ

wðmÞ
t�1;

where wðmÞ
t�1 is the normalized weight of xðmÞ

0:t�1. Normal-
ization is straightforward, we simply compute wðmÞ

t ¼wðmÞn
t =

∑M
j ¼ 1w

ðjÞn
t . Let us also note that drawing from πtðx0:tÞ can be

done sequentially: given xðmÞ
0:t�1, we simply generate xðmÞ

t from

the pdf πtjt�1ðxt jxðmÞ
0:t�1Þ.

The simplest implementation of the PF is obtained
when we choose πtðx0:tÞ ¼ pðx0:tÞ ¼ pðx0Þ∏t

k ¼ 1pðxkjxk�1Þ
and perform resampling steps [17] at every time step.
The resulting algorithm is often called bootstrap filter [19]
or sequential importance resampling (SIR) algorithm [17].
We outline it in Table 1 and will henceforth refer to it as a
centralized particle filter (CPF).

The resampling step randomly eliminates samples with
low importance weights and replicates samples with high
importance weights in order to avoid the degeneracy of
the importance weights over time [17,31]. Here, we apply
multinomial resampling, but several other choices exist
[8,17,15,3]. We also assume that resampling is carried out
at every time step, but applying the proposed methods with
periodic or random resampling times is straightforward.

Bayesian estimators of xt can be easily approximated

using the random grid fx ðmÞ
t ;wðmÞ

t gMm ¼ 1. In particular, let
μtðdxtÞ ¼ pðxt jy1:tÞ dxt be the probability measure asso-
ciated to the posterior pdf pðxt jy1:tÞ. If we define the
discrete random measure

μMt ðdxtÞ ¼ ∑
M

m ¼ 1
wðmÞ

t δx ðmÞ
t
ðdxtÞ;

where δx ðmÞ
t
ðdxtÞ is the unit delta measure located at x ðmÞ

t ,

then we can approximate any integrals with respect to
the probability measure μtðdxtÞ as weighted sums. For

Table 1
Centralized implementation of a particle filter (CPF).

Initialization at t¼0:

1. Draw M random samples, xðmÞ
0 , m¼1,…,M, from prior pðx0Þ.

Recursive step, for t40:
1. For m¼ 1;…;M,

– draw x ðmÞ
t � pðxt jxðmÞ

t�1Þ and set x ðmÞ
0:t ¼ fx ðmÞ

t ; xðmÞ
0:t�1g;

– compute importance weights wðmÞn
t ¼ pðyt jx ðmÞ

t Þ.
2. Normalize the weights as wðmÞ

t ¼wðmÞn
t =∑M

j ¼ 1w
ðjÞn
t .

3. Resample the weighted sample fx ðmÞ
0:t ;w

ðmÞ
t gMm ¼ 1 to obtain an unweighted sample fxðmÞ

0:t g
M

m ¼ 1.

J. Read et al. / Signal Processing 98 (2014) 121–134124
example, the MMSE estimator of xt can be approximately
computed as

xMMSE
t ¼

Z
xtμtðdxtÞ �

Z
xtμ

M
t ðdxtÞ ¼ ∑

M

m ¼ 1
wðmÞ

t x ðmÞ
t :

We refer to the standard PF of Table 1 as centralized in
order to make explicit that it requires a central unit (CU)
that collects all the observations together, generates all the
particles and processes them together. A number of results
regarding the convergence of the CPF can be found in [3]
and references therein.
3. Distributed particle filtering

3.1. General structure

We look at the DRNA algorithm introduced in [6]. This
algorithm was originally proposed to speed up the proces-
sing time of PFs by making them suitable for multi-
processor devices endowed with high-speed communica-
tion networks. In this paper, we propose to apply a DRNA
scheme to implement a distributed PF on a WSN, whose
nodes can operate as processing elements (PEs). Let us
remark that this framework is rather different from the
one assumed in [6] or [28]. In particular, the PEs are low-
powered devices that have to perform sensing, computa-
tion and radio communication tasks while running on
batteries. Moreover, the schemes of [6,28] are based on the
assumption that all observations can be readily made
available to all PEs in the system. Such capacity cannot
be taken for granted in a WSN, where the observations are
collected locally by the nodes and communications are
necessarily constrained because of energy consumption. In
the following we describe the method using, essentially,
the notation of [28].

Assume we have N processing nodes (i.e., N PEs) in the
network; each is capable of running a separate PF with K
particles (we ignore any non-processing nodes for now
since they do not run particle filters). The total number of
particles distributed over the network is M¼NK. In parti-
cular, after the completion of a full recursive step of the
distributed PF at time t�1, the n-th PE should hold the set
fxðn;kÞ

t�1;w
ðn;kÞn
t�1 ;W ðnÞn

t�1gk ¼ 1;…;K , where
�
 xðn;kÞ
t�1 is the k-th particle at the n-th PE,
�
 wðn;kÞn
t�1 is the corresponding nonnormalized importance

weight, and
�
 W ðnÞn
t�1 ¼∑K

k ¼ 1w
ðn;kÞn
t�1 is the nonnormalized aggregated

weight of PE n.

Each PF run locally in a node involves the usual steps of
drawing samples, computing weights and resampling. In
particular, resampling is carried out only locally, without
interaction with the particles in other PEs. In order to
avoid the degeneracy of the local sets of particles (e.g.,
when K is very low), the DRNA scheme includes a particle
exchange step in which the PEs interchange subsets of
their particles and nonnormalized weights. This step
involves the update of the aggregated weights, but each
individual particle preserves its nonnormalized impor-
tance weight, no matter its location.

Compared to the implementation of a DRNA-based
particle filter in a single machine (as assumed in [6,28])
the design of a computational scheme for a WSN arises
issues related to the exchange of data among the PEs,
either particles or observations. In the particle exchange
step, we need to introduce additional notation in order to
define neighbor PEs, i.e., those nodes of the WSN that run
a local PF and have a communication link that enables the
transmission of a subset of their particles within the time
frame of a single sequential step of the filter. The spread of
the observations over the WSN is not dealt directly in this
section, but we advocate the local processing of the mea-
surements collected by the sensors in order to reduce the
volume of transmitted data. This is the strategy followed in
the real time implementation discussed in Sections 4 and 5.

In the following, we describe the algorithm steps in
detail, including the computation of state estimators, and a
complete outline of the method.

3.2. Particle exchange

The particle set in the n-th PE is said to degenerate
when its aggregated weight W ðnÞn

t becomes negligible
compared to the aggregated weights of the other nodes.
Note that the value of the normalized aggregated weight is

then close to zero, W ðnÞ
t ¼W ðnÞn

t =∑N
k ¼ 1W

ðkÞn
t � 0 and the

particles in the n-th set hardly contribute to the approx-
imation of the posterior probability distribution of interest.
This means that the computational effort invested in
propagating them becomes a waste.

In order to keep the aggregated weights balanced,
neighboring nodes can exchange subsets of particles and
local nonnormalized weights [28]. Assume that, at the
beginning of the t-th time step, the n-th PE holds the

J. Read et al. / Signal Processing 98 (2014) 121–134 125
weighted particles fxðn;kÞ
t�1;w

ðn;kÞn
t�1 gk ¼ 1;…;K (note the nonnor-

malized weights). The n-th node will receive weighted
particles from a certain set of PEs and transmit particles to
another (possibly different) set of PEs. To be specific, let us
denote
�
 N in
n Df1;2;…;Ng, set of indices corresponding to the

nodes that are expected to transmit a subset of their
particles to the n-th PE, and
�

2 The availability of the observations, which are typically collected
locally in a WSN, involves communications among the nodes. This issue
will be addressed in Section 4.

3 This can be substituted by any other procedure without affecting
the rest of the algorithm.
N out
n Df1;2;…;Ng, set of indices corresponding to the

nodes that expect to receive a subset of the particles
generated at the n-th PE.

If all the links between PEs are bidirectional, then
N in

n ¼N out
n . For regularity, assume that each PE transmits

disjoint subsets of Q particles to each of its designated
neighbors. In particular, let

Mn;s
t ¼ fxðn;isr Þ

t�1 ;w
ðisr Þn
t�1gr ¼ 1;…;Q

be the particles and weights transmitted from node n to
node sAN out

n . The indices is1;…; isQ Af1;…;Kg can be
selected in any desired way (even randomly) as long as
the messages Mn;s

t are disjoint, i.e., Mn;s
t \ Mn;r

t ¼∅ for
any pair s; rAN out

n , sar. If the messages were not disjoint,
then some particles could be replicated and their weights
should be modified, so as to keep them proper and
guarantee the consistency of the filter approximation.
The overall number of particles would also become time-
varying. As a consequence, the computational overhead of
the algorithm would be increased without any clear
advantage.

The information held by the n-th PE after the particle
exchange at time t is given by f ~x ðn;kÞ

t�1; ~w
ðn;kÞn
t�1 gKk ¼ 1 where

f ~x ðn;kÞ
t�1; ~w

ðn;kÞn
t�1 gKk ¼ 1 ¼

¼ fxðn;kÞ
t�1;w

ðn;kÞn
t�1 gKk ¼ 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

initial

\ð ⋃
sAN out

n

Mn;s
t Þ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
transmitted

0
BBBB@

1
CCCCA [⋃

sAN in
n

Ms;n
t

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
received

0
BBBB@

1
CCCCA;

ð5Þ
and we assume that

j ⋃
sAN out

n

Mn;s
t j ¼ j ⋃

sAN in
n

Ms;n
t j;

for every PE nAf1;…;Ng, so that the number of particles
per PE remains constant, K¼M/N. The new aggregated
weight for the n-th node becomes ~W

ðnÞn
t�1 ¼∑K

k ¼ 1
~wðn;kÞn
t�1 . Let

us remark that the overall sets of particles and weights
before and after the particle exchange are identical, i.e.,

⋃
N

n ¼ 1
fxðn;kÞ

t�1;w
ðn;kÞn
t�1 gKk ¼ 1 ¼ ⋃

N

n ¼ 1
f ~x ðn;kÞ

t�1; ~w
ðn;kÞn
t�1 gKk ¼ 1;

while, in general, the aggregated weights are different,
W ðnÞn

t�1a
~W

ðnÞn
t�1.

3.3. Local processing

Immediately after the particle exchange at time t, the
weighted particle set at the n-th PE is f ~x ðn;kÞ

t�1; ~w
ðn;kÞn
t�1 gk ¼ 1;…;K .
The generation of new particles, the update of the impor-
tance weights and the resampling step are taken strictly
locally, without interaction among different nodes. To be
specific, assume that the transition pdf of model (1) is used
as an importance function and that the observation vector
yt is available at every node.2 Then, at the n-th PE, and for
k¼ 1;…;K ,
1.
 x ðn;kÞ
t is drawn from the pdf pðxðn;kÞ

t j ~x ðn;kÞ
t�1Þ, and
2.
 the corresponding nonnormalized weight is computed
as

wðn;kÞn
t ¼ ~wðn;kÞn

t�1 pðyt jx ðn;kÞ
t Þ:

Hence the information stored by the n-th node at this
point becomes fx ðn;kÞ

t ;wðn;kÞn
t gk ¼ 1;…;K and the aggregated

weight is W ðnÞn
t ¼∑K

k ¼ 1w
ðn;kÞn
t .

Next, a resampling step is taken locally by each PE.
Assuming a multinomial resampling algorithm,3 we assign,
for k¼ 1;…;K ,

xðn;kÞ
t ¼ x ðn;jÞ

t ; with probability wðn;jÞ
t and jAf1;…;Kg;

where wðn;jÞ
t ¼ wðn;jÞn

t

∑K
l ¼ 1w

ðn;lÞn
t

; j¼ 1;…;K ;

are the locally normalized importance weights. After resam-
pling, the particles at the n-th PE are equally weighted,
namely wðn;kÞn

t ¼W ðnÞn
t =K . Trivially note that W ðnÞn

t ¼
∑K

k ¼ 1w
ðn;kÞn
t ¼∑K

k ¼ 1w
ðn;kÞn
t , i.e., the resampling step keeps

the aggregated weights invariant.

3.4. Estimation

Assume that we are interested in the estimation of
moments of the posterior distribution, e.g.,

ðf ; μtÞ ¼
Z

f ðxtÞμtðdxtÞ;

where f is some function of the state vector at time t,
μtðdxtÞ ¼ pðxt jy1:tÞ dxt is the filter probability measure and
we introduce the shorthand ðf ; μtÞ to denote the integral of
the function f with respect to the measure μt.

We can obtain local estimates of ðf ; μtÞ at any node. To
be specific, we can build discrete random approximations
of the measure μt at the n-th PE as

μn;K
t ðdxtÞ ¼ ∑

K

k ¼ 1
wðn;kÞ

t δ
x ðn;kÞ
t

ðdxtÞ;

before the resampling step, and

μn;Kt dxtð Þ ¼ 1
K

∑
K

k ¼ 1
δxðn;kÞt

dxtð Þ;

Table 2
Distributed particle filter (DPF) algorithm.

Initialization. At time t¼0, for n¼ 1;…;N:

1. Draw xðn;kÞ
0 , for k¼1,…,K, from prior pðx0Þ.

Assign wðn;kÞn
0 ¼ 1

K for all k, set W ðnÞn
0 ¼ 1.

2. Build the set fxðn;kÞ
0 ;wðn;kÞn

0 ;W ðnÞn
0 gKk ¼ 1.

Recursive step. At time t40, start from the set fxðn;kÞ
t�1;w

ðn;kÞn
t�1 ;W ðnÞn

t�1g
K

k ¼ 1. Then, for n¼ 1;…;N:

1. Exchange particles with neighbor PEs in N in
n and N out

n , as described in Section 3.2, to obtain the sets f ~x ðn;kÞ
t�1; ~w

ðn;kÞn
t�1 gKk ¼ 1.

2. Sampling : Draw x ðn;kÞ
t from pðxt j ~x ðn;kÞ

t�1Þ, for k¼1,…,K.

3. Weight update: w ðn;kÞn
t ¼ ~w ðn;kÞn

t�1 pðyt jx ðn;kÞ
t Þ.

4. Estimation: [optional] compute ðf ; μn;K
t Þ as in Section 3.4.

5. Resampling (local): to obtain the set fxðn;kÞ
t ;wðn;kÞn

t ;W ðnÞn
t g, where wðn;kÞn

t ¼W ðnÞn
t =K for every k¼ 1;…;K .

J. Read et al. / Signal Processing 98 (2014) 121–134126
after the resampling step, where wðn;kÞ
t ¼wðn;kÞn

t =W ðnÞn
t ,

k¼ 1;…;K , are the locally normalized importance weights.
This choice of discrete measures leads to the approxima-
tions

f ; μn;K
t

� �
¼ ∑

K

k ¼ 1
wðn;kÞ

t f x ðn;kÞ
t

� �
and

f ; μðn;KÞt

� �
¼ 1

K
∑
K

k ¼ 1
f xðn;kÞ

t

� �

of the posterior expectation ðf ; μtÞ.
Global estimates can be easily computed by a linear

combination of the local estimates. If W ðnÞ
t ¼W ðnÞn

t =

∑N
i ¼ 1W

ðiÞn
t is the globally normalized aggregated weight

of the n-th node, then we can build the discrete random
measures

μN;K
t ðdxtÞ ¼ ∑

N

n ¼ 1
W ðnÞ

t μn;K
t ðdxtÞ and

μN;Kt ðdxtÞ ¼ ∑
N

n ¼ 1
W ðnÞ

t μn;Kt ðdxtÞ

using the local approximations either before or after
resampling, respectively. The resulting global estimates are

ðf ; μN;K
t Þ ¼ ∑

N

n ¼ 1
W ðnÞ

t ðf ; μn;K
t Þ and

ðf ; μN;Kt Þ ¼ ∑
N

n ¼ 1
W ðnÞ

t ðf ; μn;Kt Þ: ð6Þ

The resampling operation carried out locally at the N
nodes is globally unbiased in the sense defined in, e.g.,
[15,28]. To make this explicit, consider the sigma algebra
generated by the random weights before resampling,
i.e., Gt ¼ s�ðwðn;kÞn

t ; x ðn;kÞ
t ;n¼ 1;…;N; k¼ 1;…;KÞ. Since the

aggregated weights W ðnÞn
t are Gt�measurable, for any

integrable function f the conditional expectation of the
estimator ðf ; μN;Kt Þ given Gt is

Efðf ; μN;Kt ÞjGtg ¼ ∑
N

n ¼ 1
W ðnÞ

t Efðf ; μn;Kt ÞjGtg ð7Þ

and, since the local normalized weights wðn;kÞ
t and particles

x ðn;kÞ
t are also Gt�measurable,

Efðf ; μn;Kt ÞjGtg ¼ ∑
K

k ¼ 1
wðn;kÞ

t f ðx ðn;kÞ
t Þ ¼ ðf ; μn;K

t Þ: ð8Þ
Substituting (8) into (7) yields

Efðf ; μN;Kt ÞjGtg ¼ ðf ; μN;K
t Þ;

i.e., the DRNA procedure is unbiased.

3.5. Summary

Table 2 summarizes the DPF algorithm investigated in
this paper. Note that in order to apply this technique, we
assume that all the observations in the vector yt are
available at every node at time t. This assumption is fairly
natural in the parallel computation setup of [6,28], but not
necessarily in the WSN framework of interest here. This
issue will be specifically addressed in the subsequent
sections. In order to obtain a global estimate of ðf ; μtÞ, each
node n in the network should transmit its local estimate
ðf ; μn;Kt Þ and its aggregated weight W ðnÞn

t to a prescribed
node (working as a fusion center) where ðf ; μN;K

t Þ ¼
∑N

n ¼ 1W
ðnÞ
t ðf ; μn;K

t Þ can be computed. Note that the PEs
can keep running asynchronously with the fusion center,
i.e., the DPF does not have to be stopped or even delayed to
compute the global estimates in (6).

4. Hardware and software framework

4.1. Hardware

In our deployment we use the IMOTE2; which has CPU
set at 23 MHz (although it lacks native support for floating
point operations which are, as a result, relatively much
slower), 32 Megabytes of memory, and a transceiver with a
maximum transmission rate of 31,250 bytes/s. The motes
are about 6�4�2 centimeters (including their power
source of three AAA batteries).

The hardware limitations define the problem and our
approach to it. Our goal is primarily constrained to
obtaining the highest possible speed at which each set of
observations can be processed (one sequential step of the
PF) without compromising the mathematical soundness of
the algorithm. An increase in the frequency of sequential
steps correlates strongly with higher tracking accuracy,
and also the speed of the target we are able to track. This
takes priority over developing more sophisticated models.

In our deployment, processing is distributed across
several nodes, although this becomes a trade-off with
the network's capabilities. The DRNA algorithm implies

Fig. 1. Our development and testing framework. The DPF library can be
used by either a mote (above) or desktop application (below), both
interfacing through a communications layer. The latter can be simulated
during development so that the entire network can be simulated on the
same machine.

J. Read et al. / Signal Processing 98 (2014) 121–134 127
a considerable amount of communication between nodes,
yet the data transfer between multiple nodes in a wireless
sensor network is inherently much less reliable than
within multiple processors in a single machine or a wired
network. Therefore, balancing the computational and net-
work loads efficiently is the key to providing the best
tracking results.

We use the IMOTE2's light sensors, which provide an
integer reading between 0 and 65535 relative to the
current light level (0 in complete darkness).
4.2. Software

We build the PF described in Section 3 as a library in
the C programming language; attractive in terms of speed,
and usable on the mote's operating system: TINYOS.4

Fig. 1 outlines our framework. To interface our library
with the mote hardware, we have developed an application
layer which calls the appropriate functions and interfaces
with the sensor hardware, and a communications layer
which interfaces the application with the radio. These two
layers are written both for the motes for deployment, and
in standard C for simulations.

Our distributed PF library implements three scenario-
dependent elements: the dynamic function, the observa-
tion function, and also the scenario layout specification.
The dynamic function describes the motion of the target
we are tracking, i.e., the pdf pðxt jxt�1Þ. The observation
function determines how these observations relate to the
state variables, i.e., the pdf pðyt jxtÞ. The layout specification
defines the physical network layout (sensor positions, light
source, and the a priori distribution of the state, i.e., the
pdf pðx0Þ). Any of these elements can be changed to suit
different deployments. The source code of our library is
available at: https://sourceforge.net/projects/dpflib/files/.
4 See http://www.tinyos.net
4.3. Implementation

Fig. 2 shows a simple example of distributed network of
the type that we consider: a heterogeneous network,
consisting of processing elements (PEs) and sensing-only
elements (SEs). In our particular deployment, all hardware
is identical and both PEs and SEs read and broadcast
sensor observations, but only the designated PEs generate
particles and compute weights for the DPF. In many
settings, the SEs would be much simpler hardware or, all
nodes of the network would be PEs.

We assume a fully connected network, within which
there are two possible network operations:
1.
Fig
are
is r
broadcasting sensor observations to all PEs; and

2.
 sending particles to specific PEs,
where operation 1 is carried out by all nodes, and operation
2 is carried out only by PEs. With respect to PEs, in practice
we find it convenient to combine both operations into a
single broadcast packet sent out at each sequential step.

Recall from Section 3.2 that in the particle exchange
step of the DPF each PE s, sAf1;…;Ng, exchanges particles
and weights with its neighbors. In particular, the s-th PE
receives a set of weighted particles Mr;s

t from every

neighbor PE with index rAN in
s � f1;…;Ng and transmits

a set of particles Ms;k
t to each PE with index kAN out

s

� f1;…;Ng. In our implementation we design jN in
s j ¼

jN out
s j ¼ 1, s¼ 1;…;N, for simplicity. In particular, N in

s ¼
fs�1g, for s¼ 2;…;N, and N out

s ¼ fsþ1g, for s¼ 1;…;N�1

while N in
1 ¼ fNg and N out

N ¼ f1g.
Since the particle exchange is carried out immediately

after the local resampling steps, all samples have equal

weights and, therefore, it is enough to select Ms�1;s
t ¼

fxðs�1;iÞ
t�1 ;wðs�1;iÞn

t�1 gQi ¼ 1 and Ms;sþ1
t ¼ fxðs;iÞ

t�1;w
ðs;iÞn
t�1 g

Q

i ¼ 1, i.e.,
each PE transmits its first Q particles and receives a set
of Q particles to replace them.
. 2. A small example network layout with four nodes, two of which
designated as PEs and two as SEs. The different thickness of the lines
espective of different amounts of data sent among nodes.

https://sourceforge.net/projects/dpflib/files/
http://www.tinyos.net

6

J. Read et al. / Signal Processing 98 (2014) 121–134128
From the point of view of PE s, the following operations
are carried out at each time step t:
5

1.
 Comms. layer: packets arrive from all other nodes

j¼ f1;…; Jg\fsg.

2.
4

Application layer: extract the observations yt;j,
j¼ f1;…; Jg\fsg; extract particles received from the PE

nAN in
s , namely the set Mn;s

t ¼ fxðn;iÞ
t�1;w

ðn;iÞn
t�1 g

Q

i ¼ 1.

3.
3

DPF library: create the observation vector yt ¼
fyt;1;…; yt;Jg> and the set f ~x ðs;kÞ

t�1; ~w
ðs;kÞn
t�1 g

K

k ¼ 1 according to
Eq. (5).
4.

2

DPF library: step through the PF (recursive steps 2–5 of

Table 2) to obtain the set fxðs;kÞ
t ;wðs;kÞn

t gKk ¼ 1.

5.
1 Z
Application layer: wait for timer tick, then read the
observation ytþ1;s from the sensor and put it into a

packet with the messageMs;n
tþ1 ¼ fxðs;iÞ

t ;wðs;iÞn
t gQi ¼ 1, where

nAN out
s .
0
6.

0 0.5 1 1.5 2 2.5 3

Fig. 3. Tracking scenario of 3.2�6.0 m (a top-down view). The thick line
is the light source (a window). There are J¼10 motes equipped with light
sensors around the edges, indicated by squares. The entry to the scenario
lies at the bottom-right corner. The detection zone (Z) is exemplified for
one of the sensors.
Comms. layer: broadcast the packet.

The computation of estimates is not, strictly speaking,
part of the algorithm. Local estimates can be computed at
any time in the PEs without interrupting the flow of the
algorithm. Specifically, given some integrable function of
interest f, the approximate integral ðf ; μs;Kt Þ can be com-
puted in the s-th PE after step (3) is completed. In step (5)
the pair of fðf ; μs;Kt Þ;W ðsÞn

t g can be wrapped into the packet
to be transmitted and then broadcast in step 6. One or
more PEs in the network collect the local estimates ðf ; μn;Kt Þ,
n¼ 1;…;N, and compute the overall estimate ðf ; μN;Kt Þ ¼
∑N

n ¼ 1W
ðnÞ
t ðf ; μðn;KÞt Þ. In our setup, the task is carried out by

PE 1, but this is completely arbitrary.
The network is initialized by generating a command

broadcast from a base node. Upon receiving this command,
all motes set their timers to the specified frequency and
initialize them. The time count is set to t¼0 and initial
particle sets are drawn from the prior pðx0Þ, i.e., the sets

fxðn;kÞ
0 gKk ¼ 1 are generated, with aggregated weights W ðnÞn

0 ¼
1 for every n and wðn;kÞ

0 ¼ 1=K for every n and k. At time
t¼1, each node transmits its sensor observation y1;j,
j¼ 1;…; J, which begins the loop (no particle exchange is
actually needed at time t¼0).

In our experiments, the fusion of local estimates into a
global estimate takes place on the designated mote at each
timestep, as soon as the incoming packet is unpacked, i.e.,
as soon as the other motes' local estimates are available.
Depending on the application, this estimate could be
recorded (for later analysis) or forwarded on to be mon-
itored by the user.

5. Construction of observation models

The goal is to implement a DPF for target tracking using
WSN that collects light intensity measurements. Our
experimental scenario is depicted in Fig. 3. It is a room
with J¼10 nodes (each equipped with a light sensor)
enclosing an area of 3.2�6.0 m with a single source of
natural light (a window). Although there is little variation
in artificial light, natural light comes more readily from
side-on, making it more practical to carry out indoor
tracking without modification to the existing setup of the
room (by adding lamps, etc.).

Using light sensors for position estimation is funda-
mentally different from using other types of observations
such as RSS, sound waves and GPS signals, which are
essential functions of the distance between the target and
the sensor. Light sensors only provide an integer value
proportional to the amount of light they are receiving. In a
uniform medium (such as, approximately, the air inside a
room), light travels in straight lines, and over short
distances (e.g., several meters, as we are considering)
scattering from suspended particles and air molecules
has a negligible effect on light. A good review of optics is
given in [24]. Hence, any object geometrically enclosed in
the region between a light sensor and a light source can
affect the values being read by that sensor. If the source of
light is a window, in a top-down two-dimensional repre-
sentation the detection zone can be viewed as a triangle,
as depicted in Fig. 3 (i.e., the Z region).

Reflections and scattering from surfaces (such as walls),
inanimate objects (e.g., furniture) and the target itself are
far too complex to be modeled, especially on our limited
hardware. Since it is very hard to translate the distur-
bances caused by the target in the sensor readings into
distance measurements, we instead focus on obtaining
binary observations: 1 if the target is inside the detection
zone and 0 otherwise.

As the target keeps moving within the detection zone,
it may block light or actually reflect light into the light
sensor, thus causing the light level reading to go either up

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

samples (one every 0.5 seconds)

le
ve

l o
f l

ig
ht

 m
ea

su
re

d

Fig. 4. The light signal when the target (a walking person) moves
randomly outside the detection zone (solid line) and randomly inside
the detection zone (dashed line). Rather than a reduction in the light
level, the presence of a target within the detection zone causes a large
variance in the sensor readings.

5 This means that the observations are independent conditional on a
given target position. This is a rather common assumption. Intuitively, it
means that the observational noise at different sensors is independent.

J. Read et al. / Signal Processing 98 (2014) 121–134 129
or down. This effect is illustrated in Fig. 4. Furthermore,
under natural light there is no base level for the measured
signal (when no target is present) due to changes in the
weather or the time of day. Therefore, it is very difficult to
detect the target presence from the mean or instantaneous
amplitude of the light signal. Instead, the short-term
variance of light readings is very informative and becomes
a reliable indicator of the presence of moving objects in
the detection zone. Note that a motionless target becomes
‘invisible’ (as the variance of light readings stabilizes) but
its position is not ‘lost’ by the tracker.

In order to turn this intuition into a quantitative model,
we propose to process the light readings at every node
(both PEs and SEs) in order to convert them into binary
data. Between the sequential steps of t�1 and t each
sensor j¼ 1;…; J collects L light readings (evenly spaced in
time) to produce a set Vt;j ¼ fv1;t;j;…; vL;t;jg (with L¼5 in
our experiments). For a given threshold τ, the j-th sensor
outputs the binary datum

yt;j ¼
1 if varðVt;jÞ4τ

0 otherwise

�
ð9Þ

where varðVt;jÞ is the empirical variance of the sample Vt;j.
Putting the observations of all nodes together into a single
J�1 vector we obtain, for every timestep t, the full
observation yt ¼ ½y1;t ;…; yJ;t �> .

For our experiments, we calibrated the threshold τ a
priori (offline) from a set of real-world data. Specifically,
we instructed a person (acting as the target) to walk
following an arbitrary trajectory within the monitored
area during a period comprising T discrete time steps. At
each time step t ¼ 1;…; T , each sensor j collected samples
Vt;j ¼ fv1;t;j;…; vL;t;jg; j¼ 1;…; J (one set per sensor). With
the data collected up to time T, we selected the threshold τ
as the average of the empirical variances of all sensors, i.e.,

τ¼ 1
JT

∑
J

j ¼ 1
∑
T

t ¼ 1
var Vt;j

� �
:

The same threshold is then used by both PEs and SEs.
Recall from Section 3 that the nonnormalized weight
for the k-th particle of the n-th PE is computed as

wðn;kÞn
t ¼ ~wðn;kÞn

t�1 pðyt jx ðn;kÞ
t Þ:

Therefore, it is necessary to specify a model for the like-
lihood pðyt jxtÞ. We assume that the observations are
conditionally independent5 across the different sensors,
hence pðyt jxtÞ ¼∏J

j ¼ 1pðyj;t jxtÞ and we only need to specify
the marginal density pðyj;t jxtÞ. We define the latter as

pðyj;t jxtÞ ¼

1�F þ if xtAZj and yj;t ¼ 1

F þ if xt =2Zj and yj;t ¼ 1
1�F� if xt =2Zj and yj;t ¼ 0
F� if xtAZj and yj;t ¼ 0

8>>>><
>>>>:

ð10Þ

where Zj is the two-dimensional detection zone enclosed
by sensor j and the vertices of the light source, and F þ and
F� are the false positive and false negative rates associated
with the deployment (i.e., the probability of yj;t ¼ 1 when
the target is outside Zj, and the probability of yj;t ¼ 0 when
the target is inside Zj, respectively). The error rates F þ and
F� are calibrated empirically from a short supervised walk
(T¼20 steps) in the real-world scenario. Specifically, we
set

F þ ¼ 1
JT

∑
J

j ¼ 1
∑
T

t ¼ 1
I yj;t ¼ 0; xtAZj

� �
;

F� ¼ 1
JT

∑
J

j ¼ 1
∑
T

t ¼ 1
I yj;t ¼ 1; xt =2Zj

� �
;

where each yt;j is given from Eq. (9) on the motes and
Iða; bÞ is an indicator function returning 1 if, and only if,
both a and b are true, and 0 otherwise. In our experimental
setup, this supervised walk was an X-shaped trajectory
passing through all sensors' detection zones at least once.
The error probabilities F� and F þ are constants in the
model and identical for all PEs. The (supervised and a-
priori known) walk used to calibrate F þ ; F� is different
from the (unsupervised and arbitrary) walk used to
obtained the threshold τ.

Note that the constants in the likelihood model (i.e., τ,
Fþ , and F�) are the same for all nodes. It is possible to
select a unique threshold τj (and, hence, unique error rates
F þ
j and F�j) for every sensor by using supervised trajec-

tories in and out of the detection zones Z1;…; ZJ . This is
intuitively quite appealing from the point of view of trying
to maximize the accuracy of the observation model.
However, we found that in real-world tests this approach
leads to worse performance than a single general model
for all nodes. This is probably due to the greater possibi-
lities of introducing errors when manually aligning sensor
readings with the true trajectory (necessary for a super-
vised walk), and from inadvertently obtaining overly
‘sterile’ data by choreographing the target's movements
too precisely, as well as overfitting the data (the target
used for training will not be the same one for testing).
Moreover, manually aligning the binary sensor readings

J. Read et al. / Signal Processing 98 (2014) 121–134130
for the true trajectory is a very intensive task, impractical
for many real-world deployments. In light of this, we
decided to calibrate a single observation model, common
to all sensors.

6. Simulation and experimental results

We illustrate the validity of our approach by applying
the proposed DPF algorithm in a real-world WSN for target
tracking using the binary observation model described in
Section 5. We first describe the dynamic model for the
target, then show results both for synthetic and experi-
mental (real-world) observations. We conclude the section
with a brief discussion of the advantages and disadvan-
tages of the proposed scheme.

6.1. Setup

We consider a state-space vector xt ¼ ½x1;t ; x2;t ; x3;t ;
x4;t ; �> AR4 that describes the position pt ¼ ½x1;t ; x2;t �>
and velocity vt ¼ ½x3;t ; x4;t �> of the target at time t.

The prior distribution pðx0Þ is (multivariate) Gaussian.
In particular, p0 and v0 are a priori independent and

pðp0Þ ¼Nðp0jp0; s
2
p;0I2Þ and pðv0Þ ¼Nðv0jv0; s2v;0I2Þ;

where Nðzjz;ΣÞ denotes the Gaussian density of the ran-
dom vector z, with mean z and covariance matrix Σ, I2 is
the 2�2 identity matrix and
�
 the mean prior position is p0 ¼ ½2:5;0:4�> , i.e., the
target enters through the bottom-right corner of the
area of interest sketched in Fig. 3(left),
�
 the mean prior velocity is v0 ¼ ½�0:2;0:2�> , i.e., the
target is initially expected to move toward the middle
of the area of interest, and
�
 the prior variances are s2p ¼ 0:5 and s2v ¼ 4� 10�3.

Assume that the region of interest is a rectangle of the
form A¼ A1 � A2, where A1AR2 and A2AR2. Then we
model the target dynamics as

xt ¼ bAðfðxt�1; atÞþutÞ; ð11Þ
where
Table 3
�

DPF and model parameters.
fatgtZ1 is an i.i.d. sequence of indicator random vari-
ables with pmf pðat ¼ 1Þ ¼ α1 ¼ 0:1 (and pðat ¼ 0Þ ¼
1�α1 ¼ 0:9Þ,
Variable Symbol Value (unit)
�

No. of PEs N 4a
fðxt�1; atÞ is a vector-valued state transition function
(specified below),
No. of nodes J 10
�

No. of SEs J�N
Total no. of particles M 100
ut is the process noise, with density Nðut j0;CuÞ and
Cu ¼ s2pI2

0
0

s2v I2

h i
,

No. of particles/PE K M/N
�

No. of exchanged particles Q 1

No. of timesteps T 18
Sampling period Ts 1.0 (s)
Position variance sp

2
0.5 (m2)

Velocity variance sv
2

0.004 (m2)
Maximum velocity Vmax 1.5 (m/s)

a Varied for some experiments.
and bA is a ‘wrapper’ function designed to keep the
target motion within the limits of the region A (also
described below).

The indicator at determines the kind of motion of the
target. If at¼0, then ftð	;0Þ yields a constant-velocity [4]
model. If, on the other hand, at ¼ 1, then fð	;1Þ produces a
sharp turn by generating a velocity vector independent of
the velocity at time t�1, specifically:

fðxt�1;0Þ ¼

1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

2
6664

3
7775

x1;t�1

x2;t�1

x3;t�1

x4;t�1

2
66664

3
77775 and

fðxt�1;1Þ ¼

x1;t�1

x2;t�1

vt cos ðωtÞ
vt sin ðωtÞ

2
66664

3
77775

where Ts is the time discretization period, vt is the
modulus of the velocity at time t, drawn from the uniform
pdf pðvtÞ ¼ Uð0;VmaxÞ, and ωt is the angle of the velocity at
time t, drawn from the uniform pdf pðωtÞ ¼ Uð0;2πÞ. The
maximum velocity is set to Vmax¼1.5 m/s.

In simulations the target will reverse any of its velocity
components when moving out of the scenario bounds
(intuitively, it will ‘bounce’ off the walls). This reflects the
fact that target motion is restricted by the bounds of an
indoor scenario. In particular, recalling that A¼ A1 � A2,
we define the wrapper function bA as

bA

x1;t
x2;t
x3;t
x4;t

0
BBBB@

1
CCCCA¼

x1;t
x2;t

x3;t � ð�1ÞIðx1;t =2A1Þ

x4;t � ð�1ÞIðx2;t =2A2Þ

2
66664

3
77775

where the indicator function Iðxd =2AdÞ returns 1 if and only
if xd falls outside the interval Ad, dAf1;2g.

Table 3 displays the values of the relevant simulation
and algorithm parameters. Note that the number of PEs N
is the only variable which we change directly in our
experiments. For example, we use N¼1 as the equivalent
to a centralized PF (for comparison). Note, however, that
changing N affects other variables, such as the number of
SEs ðJ�NÞ and the number of particles per PE (K¼M/N). It
does not matter which of the nodes are PEs and which are
SEs, since we assume a fully connected network. Each
node (either PE or SE) produces one binary observation
ðyj;tÞ every Ts seconds.

Each PE transmits Q¼1 particles in the particle
exchange step. Recall that the exchange is carried out in
a circular manner, (see Section 4.3). Local resampling is

J. Read et al. / Signal Processing 98 (2014) 121–134 131
carried out at each step, which keeps the computational
load even for all t and eliminates the overhead of checking
if resampling is necessary. We use systematic resampling
Table 4
The processing time for DPF for various values of N in number of seconds
per timestep and the equivalent number of timesteps (i.e., observations)
per minute that each filter can handle. The total number of particles is
constant (M¼100); 100/N per PE. Note that this time does not include
network activity.

Processing CPF (N¼1) DPF (N¼2) DPF (N¼4) DPF (N¼8)

Sec./timestep 3.37 1.51 0.73 0.26
Timesteps/min. 17.80 39.74 82.19 230.77

−0.5 0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

40

45

50

error (m)
−
0

5

10

15

20

25

30

35

40

45

50

Fig. 5. Histogram of the position error in meters for both the centralized (left) an
both cases the error is about half a meter on average.

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

0

1

2

3

4

5

6

Fig. 6. The simulated (black) paths for two (of the 100) simulations, and the
(a) Run 1. (b) Run 2. (For interpretation of the references to color in this figure
[8] which is significantly faster than, e.g., multinomial
resampling schemes.

6.2. Computer simulations

We compare the proposed DPF with a standard CPF
over 100 random and independent target trajectories x0:T ,
with associated synthetic data y1:T drawn from the pmf
pðyt jxtÞ specified in Section 5. Then we applied both the
CPF (N¼1) and the DPF (with N¼4 PEs) with the same
total number of particles M to track each sample trajectory
from the associated sequence of synthetic observations.
We simulate with one observation (yt) per second ðTs ¼ 1Þ,
which is what the DPF N¼4 can obtain in practice, but
0.5 0 0.5 1 1.5 2 2.5

error (m)

d distributed (right) versions of the PF over 100 simulated trajectories. In

0 0.5 1 1.5 2 2.5 3

corresponding DPF-estimated paths (red); each over T¼18 timesteps.
caption, the reader is referred to the web version of this article.)

J. Read et al. / Signal Processing 98 (2014) 121–134132
note that it is impossible for the CPF to obtain this
performance in practice on this hardware (the observation
rate is too high for a single mote to cope with; see Section
6.3 and Table 4 for a discussion). The purpose of this
simulation is to compare the performance of a DPF with
that of an ideal CPF free of practical constraints, i.e., how
much performance is lost on account of distributing the
computation among the nodes.

Fig. 5 displays the empirical distribution of errors, and
the average error, for 100 simulated paths. For a sequence
of position estimates p̂t ¼ ½x̂1;t ; x̂2;t �> , t ¼ 1;…; T , the abso-
lute error at each step t is

εt ¼
ffi
ðx1;t� x̂1;tÞ2þðx2;t� x̂2;tÞ2

q
;

and the mean absolute error (MAE) for a trajectory is
ε ¼ 1=T∑T

t ¼ 1εt . The CPF obtains an average MAE for 100
0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

Fig. 7. Results of the DPF (solid line, N¼4) tracking a target walking a
prescribed trajectory (dashed line). Of the three straight lines making up
the true path, each is walked slightly faster than the previous one, with a
pause of about 1 s taken at the point where the direction is changed
(indicated by hollow circles). The path is walked in T¼18 timesteps (18 s
in our setup).

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

Timestep

S
um

 o
f u

nn
or

m
al

iz
ed

 w
ei

gh
ts

Particle swap every step

Fig. 8. These plots show the evolution of the sum of nonnormalized particle w
timestep (left) and every five timesteps (right). Nodes do better with a regular pa
noisy due to the relatively small scenario space and the ‘jumpy’ likelihood func
paths of 0.4991 m, and the DPF obtains 0.5115. We see that
the performance loss in the DPF is minimal.

Fig. 6 plots a selection of these paths along with the
path estimated by our DPF. The discrepancies between
true and estimated location tend to occur when the target
moves between detection zones. As the observations are
binary and zone-based, rather than distance-based, there
are ‘gaps’ around the edges (see for example the final
points in Fig. 6b). Accuracy also tends to be higher nearer
the light source where more detection zones overlap (see
for example, Run 1).

Fig. 8 shows the evolution of the total weight within
each node during simulation – both exchanging particles
at each step and every five steps. The benefit of exchanging
particles is clearly observable.
6.3. Experimental results

Using the parameter values in Table 3 we carried out
the following experiment to track a person walking across
the monitored region.
1.
0

1

2

3

S
um

 o
f u

nn
or

m
al

iz
ed

 w
ei

gh
ts

eig
rticl
tion
The person was instructed to walk a prescribed path
through our real-world scenario (dashed line in Fig. 7)
with each segment being slightly faster than the last.
The trajectory lasts T¼18 s. Each node generated one
observation per second, yj;t , j¼ 1;…;10, t ¼ 1;…;18.
2.
 As the person walked, we run the DPF with N¼4 PEs in
real-time to process the observations yt, t ¼ 1;…; T , and
produce estimates x̂ t ¼∑N

n ¼ 1W
ðnÞ
t ∑K

k ¼ 1x
ðn;kÞ
t wðn;kÞ

t , t ¼
1;…; T , of the target trajectory.

Fig. 7 shows the trajectory the person was asked to
walk, and the path estimated by the DPF. The true path can
only be drawn approximately, although we expect it to be
accurate to within a fraction of a meter. Time points are
unavailable, as we have no way of accurately synchroniz-
ing the target movements with the scenario, but we know
the target walked each of the three segments slightly
faster than the previous one and the full path took 18 s
to complete. As we expected, the target made brief pauses
of about 1 s at the point where the direction changed (this
0 5 10 15 20 25 30
0

.5

1

.5

2

.5

3

.5

Timestep

Particle swap every 5 steps

hts for 4 motes over 30 timesteps, both for particle-exchange every
e exchange, seen on the right after steps 5, 10, 15, etc. The view is a bit
, but it is clear that the particle exchange has a positive effect.

Table 6
The network activity (packets and bytes) per timestep for J motes of N PEs
and J�N SEs. We store each 4-dimensional state xt with its weight wt in
20 bytes (4 bytes for each number) and each observation yt in 1 byte.

Network load CPF (N¼1) DPF (NZ2) DPF (NZ2
with global est.)

No. of packets J�1 J J
No. of bytes J�1 Jþ20N Jþ40Nþ8a

a Only estimating the position-coordinates of the state (2�4 bytes).

Table 7
Memory usage for M particles, a state size of d¼4, and N PEs. Assuming
4 bytes to store floating point values (as is the case on the IMOTE2).

Variable Memory (bytes)

Weights 4M
Normalized weights 4M
States 4dM
States-buffer (used in resampling) 4dM
Estimations (local, global, norm. const.) 4dþ4dNþ4N
Layout, observation, constants, misc. 100 (approx.)

Table 5
The accuracy of a CPF under a decreasing number of observations
per second (corresponding to an increasing sampling period Ts), over
20 timesteps (observations y1:20). The corresponding MAE has been
averaged over 100 simulations. Note that y1:20 covers a larger trajectory
for larger Ts (because an observation is processed every Ts seconds). The
table shows the potential performance improvement by distributing
processing with a DPF. Recall that, in a real-world deployment with
DPF N¼4, Ts¼1 (highlighted in the table) can be held.

Ts 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

MAE (m) 0.31 0.50 0.77 1.33 1.48 1.63 1.77 1.93

J. Read et al. / Signal Processing 98 (2014) 121–134 133
reflects the time necessary to stop and change direction,
rather than a scripted break).

The DPF performs comparably to the CPF in the
simulations and, although it may have some difficulty near
the edges, where there are fewer detection zones, it
quickly catches up when the target crosses the detection
zones again. The experimental trajectory is challenging
because three of the four points are right on the edge
(if not slightly outside) the detection zones. At the final
point, where several detection zones overlap, the target is
estimated within centimeters.

6.4. Performance study

The speed (and also the accuracy) of the DPF is influ-
enced by a trade off between processing and network
communications. We study both of these factors separately.

Table 4 displays the average processing time required
per timestep of DPFs with N¼1, 2, 4, 8 (N¼1 corresponding
to the CPF) and a constant number of particles M¼100
shared among all PEs (K¼M/N each6) on the earlier-
described real-world trajectory. We see that halving N
approximately doubles the running time per timestep.
Clearly the 3.37 s per timestep as obtained by the CPF
(N¼1) is not adequate for real-time tracking. Over a run of
18 s, this only allows for five steps through the PF. Note
that a CPF simulated on an Intel Xeon 3.16 GHz CPU runs at
0.0008 per timestep (over 4000 times faster); a clear
indication of the hardware limitations we are dealing
with, as well as the efficiency of our implementation.

Table 5 displays the simulated performance for differ-
ent sampling periods of the CPF. We already saw in Table 4
that any period less than about Ts¼3.5 is unobtainable in
practice (namely, Ts¼3.37 without including network
overhead). The error at Ts¼3.5 is three times greater than
at Ts¼1, which can be managed with the proposed DPF in
practice (see Section 6.3). Since we have already showed
that the performance of the CPF and DPF are comparable
given the same Ts (see Section 6.2), we can say that in our
real-word testbed, the DPF obtains three times greater
accuracy compared to a practical CPF. Furthermore we
note that, although the loss appears to taper a bit at 3.0
and 4.0 s per timestep, this is almost certainly due to the
bounds of the scenario (3.3�6.0; thus 2.0 m is about as
much error as one can incur).
6 Or as close to it as possible: for N¼8 we round down to K¼12.
Table 6 shows how the network communication load
increases with more PEs. All DPFs in this layout send only
one more packet per timestep than a CPF, since all nodes
must broadcast their observations at each timestep (to the
CPF's single PE). On the other hand, the number of bytes
per timestep increases linearly with respect to the number
of PEs (N), as particles must be shared among them. With
N¼4 this equates to 90 bytes (or 178 if needing to broad-
cast a global estimate) at each timestep, for which we have
up to Ts�0:73¼ 0:27 s (refer to Tables 3 and 4 for N¼4).
At the IMOTE2s' maximum bandwidth of 31,250 bytes/s,
this is easily doable (even if we take into account a real-
world scenario where this maximum is not achievable,
packet overhead, time taken to resend dropped packets,
etc., we are still left with a ‘comfortable’ margin).

Table 7 shows the main memory usage by the DPF
implementation; with N¼4 PEs (K¼25 particles per PE)
we use up to 4196 bytes per mote, a tiny fraction of the
sciMote2's 32 Megabytes.

In the implementation we have presented, some opti-
mization is still possible for faster performance. For
example storing the state as integers with only 2 bytes
instead of 4, and using a single bit to store individual
observations, and only broadcast it if it is 1. This would
reduce network traffic and possibly also computational
time. However, we did not wish to present an over-
optimized system for a single scenario, but rather a generic
one that is suitable for deployments in a variety of
environments.

We have not measured battery consumption directly
(due to the difficulty in doing so on the IMOTE2). Although
we have not needed to replace the batteries throughout
several hours of testing, clearly our testbed network could
not run continuously for weeks on end, as it requires a
relatively large amount of processing and radio traffic as
compared to many other WSN applications. Nevertheless,

J. Read et al. / Signal Processing 98 (2014) 121–134134
it would be trivial to put the network in a sleep mode
while no activity was detected by any sensors.
7. Conclusions and future work

We have described the implementation of a distributed
particle filter (DPF) for target tracking in a wireless sensor
network. Unlike existing work, the proposed method
guarantees that the particle weights are constructed prop-
erly, and hence also the state estimators. We have carried
out a series of simulations using models fitted with real
light intensity data that show a tracking precision of
around half a meter. In this respect, the accuracy difference
between the proposed DPF and a centralized filter with the
same total number of particles is less than 2 cm, whereas
only the distributed version is fast enough for real-world
deployment on the hardware we consider. To support this
claim we have implemented a real-world WSN to track a
moving target in a 3.2�6.0 m indoor scenario using only
light-intensity measurements; accuracy is about half a
meter on average.

The DPF with four processing nodes is over four times
faster than an equivalent centralized version, meaning,
equivalently, that the same performance can be obtained
on less powerful hardware. A greater proportion of pro-
cessing nodes does imply more reliance on efficient com-
munications, but applications are mainly limited only by
the overall size of the network (since all observations must
be shared between all nodes). Adaptations to our filter will
be needed to scale up to much larger networks with higher
dimension observations; for example, by only requiring
observations from an active area, or working with out-of-
sequence observations. There is no reason to believe that
such adaptations are not possible, and we have shown that
our particle filter is already suitable to wireless sensor
network scenarios, on hardware thousands of times
slower than a typical desktop machine.

References

[1] K. Achutegui, L. Martino, J. Rodas, C.J. Escudero, J. Miguez, A multi-
model particle filtering algorithm for indoor tracking of mobile
terminals using RSS data, IEEE Control Appl. (CCA) Intell. Control
(ISIC) 2009.

[2] N. Ahmed, Y. Dong, T. Bokareva, S. Kanhere, S.Y. Jha, T. Bessell,
M. Rutten, B. Ristic, N. Gordon, Detection and tracking using wireless
sensor networks, in: 5th International Conference on Embedded
Networked Sensor Systems SenSys '07, ACM, 2007, pp. 425–426.

[3] A. Bain, D. Crisan, Fundamentals of Stochastic Filtering, Springer,
2008.

[4] Y. Bar-Shalom, X.R. Li, (Eds.), Estimation with Applications to
Tracking and Navigation, Wiley & Sons, 2001.

[5] Tatiana Bokareva, Wen Hu, Salil Kanhere, Branko Ristic, Travis
Bessell, Mark Rutten, Sanjay Jha. Wireless sensor networks for
battlefield surveillance, in: Land Warfare Conference, 2006.

[6] M. Bolić, P.M. Djurić, S. Hong, Resampling algorithms and architec-
tures for distributed particle filters, IEEE Trans. Signal Process.
53 (July (7)) (2005) 2442–2450.

[7] Claudio J. Bordin, Marcelo G.S. Bruno, Cooperative bling equalization
of frequency-selective channels in sensor networks using decentra-
lized particle filtering, in: 42nd Asilomar Conference on Signals,
Systems and Computers, October 2008, pp. 1198–1201.
[8] J. Carpenter, P. Clifford, P. Fearnhead, Improved particle filter for
nonlinear problems, IEE Proc.—Radar Sonar Navig. 146 (February (1))
(1999) 2–7.

[9] Daizhan Cheng, Bijoy Ghosh, Xiaoming Hu, Distributed sensor net-
work for target tracking, in: 17th International Symposium on
Mathematical Theory of Networks and Systems, 2006.

[10] Mark Coates, Distributed particle filters for sensor networks, in: The
International Conference on Information Processing in Sensor Net-
works, (IPSN), April 2004, pp. 99–107.

[11] A. Dhital, P. Closas, C. Fernández-Prades, Bayesian filtering for indoor
localization and tracking in wireless sensor networks, EURASIP J.
Wireless Commun. Networking 21 (2012), http://dx.doi.org/10.1186/
1687-1499-2012-21.

[12] P.M. Djurić, J.H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M.F. Bugallo,
J. Míguez, Particle filtering, IEEE Signal Process. Mag. 20 (September
(5)) (2003) 19–38.

[13] P.M. Djurić, Ting Lu, M.F. Bugallo, Multiple particle filtering, in: 32nd
IEEE ICASSP, April 2007.

[14] P.M. Djuric, M. Vemula, M.F. Bugallo, Target tracking by particle
filtering in binary sensor networks, IEEE Trans. Signal Process.
56 (June) (2008) 2229–2238.

[15] R. Douc, O. Cappé, E. Moulines, Comparison of resampling schemes
for particle filtering, in: 4th International Symposium on Image and
Signal Processing and Analysis, September 2005, pp. 64–69.

[16] A. Doucet, N. de Freitas, N. Gordon (Eds.), Sequential Monte Carlo
Methods in Practice, Springer, 2001.

[17] A. Doucet, S. Godsill, C. Andrieu, On sequential Monte Carlo
sampling methods for Bayesian filtering, Stat. Comput. 10 (3) (2000)
197–208.

[18] Donald P. Eickstedt, Cooperative target tracking in a distributed
autonomous sensor network, in: Proc. IEEE of OCEANS, 2006, pp. 1–6,
http://dx.doi.org/10.1109/OCEANS.2006.306976.

[19] N. Gordon, D. Salmond, A.F.M. Smith, Novel approach to nonlinear
and non-Gaussian Bayesian state estimation, IEE Proc. FRadar Signal
Process 140 (1993) 107–113.

[20] O. Hlinka, F. Hlawatsch, P. Djuric, Distributed particle filtering in
agent networks, IEEE Signal Process. Mag. (January) (2013) 61–81.

[21] O. Hlinka, O. Sluciak, F. Hlawatsch, P. Djuric, M. Rupp, Distributed
Gaussian particle filtering using likelihood consensus, in: Interna-
tional Conference on Acoustics, Speech and Signal Processing, May
2011, pp. 3756–3759.

[22] H. Huo, Y. Xu, H. Yan, S. Mubeen, H. Zhang, An elderly health care
system using wireless sensor networks at home, in: 2009 Third
International Conference on Sensor Technologies and Applications
SENSORCOMM '09, IEEE Computer Society, 2009, pp. 158–163.

[23] R.E. Kalman, A new approach to linear filtering and prediction
problems, J. Basic Eng. 82 (1960) 35–45.

[24] N. Kumar, Comprehensive Physics XII, Laxmi Publications, 2008.
[25] A. Lee, C. Yau, M.B. Giles, A. Doucet, C.C. Holmes, On the utility of

graphics cards to perform massively parallel simulation of advanced
Monte Carlo methods, J. Comput. Gr. Stat. 19 (4) (2010) 769–789.

[26] H.Q. Liu, H.C. So, F.K.W. Chan, K.W.K. Lui, Distributed particle filter
for target tracking in sensor networks. Prog. Electromagnet. Res. C
11 (2009) 171–182.

[27] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson,
Wireless sensor networks for habitat monitoring, in: 1st ACM
International Workshop on Wireless Sensor Networks and Applica-
tions WSNA '02, ACM, 2002, pp. 88–97.

[28] J. Míguez, Analysis of parallelizable resampling algorithms for
particle filtering, Signal Process. 87 (12) (2007) 3155–3174.

[29] R. Olfati-Saber, Distributed Kalman filtering for sensor networks, in:
46th IEEE Conference on Decision and Control, December 2007,
pp. 5492–5498.

[30] A. Ribeiro, G.B. Giannakis, S.I. Roumeliotis, SOI-KF: distributed
Kalman filtering with low-cost communications using the sign of
innovations, IEEE Trans. Signal Process. 54 (December (12)) (2006)
4782–4795.

[31] B. Ristic, S. Arulampalam, N. Gordon, Beyond the Kalman Filter,
Artech House, 2004.

[32] S. Santini, B. Ostermaier, A. Vitaletti, First experiences using wireless
sensor networks for noise pollution monitoring, in: Workshop on
Real-World Wireless Sensor Networks REALWSN '08, ACM, 2008,
pp. 61–65.

[33] Erik B. Sudderth, Alexander T. Ihler, Michael Isard, William
T. Freeman, Alan S. Willsky, Nonparametric belief propagation,
Commun. ACM 53 (October (10)) (2010) 95–103.

http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref3
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref3
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref6
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref6
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref6
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref8
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref8
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref8
http://dx.doi.org/10.1186/1687-1499-2012-21
http://dx.doi.org/10.1186/1687-1499-2012-21
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref12
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref12
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref12
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref14
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref14
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref14
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref17
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref17
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref17
http://dx.doi.org/10.1109/OCEANS.2006.306976
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref19
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref19
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref19
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref23
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref23
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref24
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref25
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref25
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref25
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref28
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref28
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref30
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref30
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref30
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref30
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref31
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref31
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref33
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref33
http://refhub.elsevier.com/S0165-1684(13)00456-8/sbref33

	A distributed particle filter for nonlinear tracking in wireless sensor networks
	Introduction
	Distributed particle filters
	Distributed resampling with non-proportional allocation (DRNA)
	Contribution and organization

	Non-linear filtering in state-space systems
	Bayesian filtering
	Particle filtering

	Distributed particle filtering
	General structure
	Particle exchange
	Local processing
	Estimation
	Summary

	Hardware and software framework
	Hardware
	Software
	Implementation

	Construction of observation models
	Simulation and experimental results
	Setup
	Computer simulations
	Experimental results
	Performance study

	Conclusions and future work
	References

